Augment accepts a model object and a dataset and adds
information about each observation in the dataset. Most commonly, this
includes predicted values in the .fitted
column, residuals in the
.resid
column, and standard errors for the fitted values in a .se.fit
column. New columns always begin with a .
prefix to avoid overwriting
columns in the original dataset.
Users may pass data to augment via either the data
argument or the
newdata
argument. If the user passes data to the data
argument,
it must be exactly the data that was used to fit the model
object. Pass datasets to newdata
to augment data that was not used
during model fitting. This still requires that at least all predictor
variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata
, then no
.resid
column will be included in the output.
Augment will often behave differently depending on whether data
or
newdata
is given. This is because there is often information
associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.
For convenience, many augment methods provide default data
arguments,
so that augment(fit)
will return the augmented training data. In these
cases, augment tries to reconstruct the original data based on the model
object with varying degrees of success.
The augmented dataset is always returned as a tibble::tibble with the
same number of rows as the passed dataset. This means that the passed
data must be coercible to a tibble. If a predictor enters the model as part
of a matrix of covariates, such as when the model formula uses
splines::ns()
, stats::poly()
, or survival::Surv()
, it is represented
as a matrix column.
We are in the process of defining behaviors for models fit with various
na.action
arguments, but make no guarantees about behavior when data is
missing at this time.
Usage
# S3 method for class 'felm'
augment(x, data = model.frame(x), ...)
Arguments
- x
A
felm
object returned fromlfe::felm()
.- data
A base::data.frame or
tibble::tibble()
containing the original data that was used to produce the objectx
. Defaults tostats::model.frame(x)
so thataugment(my_fit)
returns the augmented original data. Do not pass new data to thedata
argument. Augment will report information such as influence and cooks distance for data passed to thedata
argument. These measures are only defined for the original training data.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
See also
Other felm tidiers:
tidy.felm()
Value
A tibble::tibble()
with columns:
- .fitted
Fitted or predicted value.
- .resid
The difference between observed and fitted values.
Examples
# load libraries for models and data
library(lfe)
#> Loading required package: Matrix
#>
#> Attaching package: ‘Matrix’
#> The following objects are masked from ‘package:tidyr’:
#>
#> expand, pack, unpack
#>
#> Attaching package: ‘lfe’
#> The following object is masked from ‘package:lmtest’:
#>
#> waldtest
# use built-in `airquality` dataset
head(airquality)
#> Ozone Solar.R Wind Temp Month Day
#> 1 41 190 7.4 67 5 1
#> 2 36 118 8.0 72 5 2
#> 3 12 149 12.6 74 5 3
#> 4 18 313 11.5 62 5 4
#> 5 NA NA 14.3 56 5 5
#> 6 28 NA 14.9 66 5 6
# no FEs; same as lm()
est0 <- felm(Ozone ~ Temp + Wind + Solar.R, airquality)
# summarize model fit with tidiers
tidy(est0)
#> # A tibble: 4 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -64.3 23.1 -2.79 0.00623
#> 2 Temp 1.65 0.254 6.52 0.00000000242
#> 3 Wind -3.33 0.654 -5.09 0.00000152
#> 4 Solar.R 0.0598 0.0232 2.58 0.0112
augment(est0)
#> # A tibble: 111 × 7
#> .rownames Ozone Temp Wind Solar.R .fitted .resid
#> <chr> <int> <int> <dbl> <int> <dbl> <dbl>
#> 1 1 41 67 7.4 190 33.0 7.95
#> 2 2 36 72 8 118 35.0 1.00
#> 3 3 12 74 12.6 149 24.8 -12.8
#> 4 4 18 62 11.5 313 18.5 -0.475
#> 5 7 23 65 8.6 299 32.3 -9.26
#> 6 8 19 59 13.8 99 -6.95 25.9
#> 7 9 8 61 20.1 19 -29.4 37.4
#> 8 12 16 69 9.7 256 32.6 -16.6
#> 9 13 11 66 9.2 290 31.4 -20.4
#> 10 14 14 68 10.9 274 28.1 -14.1
#> # ℹ 101 more rows
# add month fixed effects
est1 <- felm(Ozone ~ Temp + Wind + Solar.R | Month, airquality)
# summarize model fit with tidiers
tidy(est1)
#> # A tibble: 3 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Temp 1.88 0.341 5.50 0.000000274
#> 2 Wind -3.11 0.660 -4.71 0.00000778
#> 3 Solar.R 0.0522 0.0237 2.21 0.0296
tidy(est1, fe = TRUE)
#> # A tibble: 8 × 7
#> term estimate std.error statistic p.value N comp
#> <chr> <dbl> <dbl> <dbl> <dbl> <int> <dbl>
#> 1 Temp 1.88 0.341 5.50 0.000000274 NA NA
#> 2 Wind -3.11 0.660 -4.71 0.00000778 NA NA
#> 3 Solar.R 0.0522 0.0237 2.21 0.0296 NA NA
#> 4 Month.5 -74.2 4.23 -17.5 2.00 24 1
#> 5 Month.6 -89.0 6.91 -12.9 2.00 9 1
#> 6 Month.7 -83.0 4.06 -20.4 2 26 1
#> 7 Month.8 -78.4 4.32 -18.2 2.00 23 1
#> 8 Month.9 -90.2 3.85 -23.4 2 29 1
augment(est1)
#> # A tibble: 111 × 8
#> .rownames Ozone Temp Wind Solar.R Month .fitted .resid
#> <chr> <int> <int> <dbl> <int> <int> <dbl> <dbl>
#> 1 1 41 67 7.4 190 5 38.3 2.69
#> 2 2 36 72 8 118 5 42.1 -6.07
#> 3 3 12 74 12.6 149 5 33.1 -21.1
#> 4 4 18 62 11.5 313 5 22.6 -4.62
#> 5 7 23 65 8.6 299 5 36.5 -13.5
#> 6 8 19 59 13.8 99 5 -1.33 20.3
#> 7 9 8 61 20.1 19 5 -21.3 29.3
#> 8 12 16 69 9.7 256 5 38.4 -22.4
#> 9 13 11 66 9.2 290 5 36.1 -25.1
#> 10 14 14 68 10.9 274 5 33.7 -19.7
#> # ℹ 101 more rows
glance(est1)
#> # A tibble: 1 × 8
#> r.squared adj.r.squared sigma statistic p.value df df.residual nobs
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 0.637 0.612 20.7 25.8 4.57e-20 103 103 111
# the "se.type" argument can be used to switch out different standard errors
# types on the fly. In turn, this can be useful exploring the effect of
# different error structures on model inference.
tidy(est1, se.type = "iid")
#> # A tibble: 3 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Temp 1.88 0.341 5.50 0.000000274
#> 2 Wind -3.11 0.660 -4.71 0.00000778
#> 3 Solar.R 0.0522 0.0237 2.21 0.0296
tidy(est1, se.type = "robust")
#> # A tibble: 3 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Temp 1.88 0.344 5.45 0.000000344
#> 2 Wind -3.11 0.903 -3.44 0.000834
#> 3 Solar.R 0.0522 0.0226 2.31 0.0227
# add clustered SEs (also by month)
est2 <- felm(Ozone ~ Temp + Wind + Solar.R | Month | 0 | Month, airquality)
# summarize model fit with tidiers
tidy(est2, conf.int = TRUE)
#> # A tibble: 3 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Temp 1.88 0.182 10.3 0.000497 1.37 2.38
#> 2 Wind -3.11 1.31 -2.38 0.0760 -6.74 0.518
#> 3 Solar.R 0.0522 0.0408 1.28 0.270 -0.0611 0.166
tidy(est2, conf.int = TRUE, se.type = "cluster")
#> # A tibble: 3 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Temp 1.88 0.182 10.3 0.000497 1.37 2.38
#> 2 Wind -3.11 1.31 -2.38 0.0760 -6.74 0.518
#> 3 Solar.R 0.0522 0.0408 1.28 0.270 -0.0611 0.166
tidy(est2, conf.int = TRUE, se.type = "robust")
#> # A tibble: 3 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Temp 1.88 0.344 5.45 0.00550 0.920 2.83
#> 2 Wind -3.11 0.903 -3.44 0.0262 -5.62 -0.602
#> 3 Solar.R 0.0522 0.0226 2.31 0.0817 -0.0104 0.115
tidy(est2, conf.int = TRUE, se.type = "iid")
#> # A tibble: 3 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Temp 1.88 0.341 5.50 0.00532 0.929 2.82
#> 2 Wind -3.11 0.660 -4.71 0.00924 -4.94 -1.28
#> 3 Solar.R 0.0522 0.0237 2.21 0.0920 -0.0135 0.118