Augment accepts a model object and a dataset and adds
information about each observation in the dataset. Most commonly, this
includes predicted values in the .fitted
column, residuals in the
.resid
column, and standard errors for the fitted values in a .se.fit
column. New columns always begin with a .
prefix to avoid overwriting
columns in the original dataset.
Users may pass data to augment via either the data
argument or the
newdata
argument. If the user passes data to the data
argument,
it must be exactly the data that was used to fit the model
object. Pass datasets to newdata
to augment data that was not used
during model fitting. This still requires that at least all predictor
variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata
, then no
.resid
column will be included in the output.
Augment will often behave differently depending on whether data
or
newdata
is given. This is because there is often information
associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.
For convenience, many augment methods provide default data
arguments,
so that augment(fit)
will return the augmented training data. In these
cases, augment tries to reconstruct the original data based on the model
object with varying degrees of success.
The augmented dataset is always returned as a tibble::tibble with the
same number of rows as the passed dataset. This means that the passed
data must be coercible to a tibble. If a predictor enters the model as part
of a matrix of covariates, such as when the model formula uses
splines::ns()
, stats::poly()
, or survival::Surv()
, it is represented
as a matrix column.
We are in the process of defining behaviors for models fit with various
na.action
arguments, but make no guarantees about behavior when data is
missing at this time.
Usage
# S3 method for class 'ivreg'
augment(x, data = model.frame(x), newdata = NULL, ...)
Arguments
- x
An
ivreg
object created by a call toAER::ivreg()
.- data
A base::data.frame or
tibble::tibble()
containing the original data that was used to produce the objectx
. Defaults tostats::model.frame(x)
so thataugment(my_fit)
returns the augmented original data. Do not pass new data to thedata
argument. Augment will report information such as influence and cooks distance for data passed to thedata
argument. These measures are only defined for the original training data.- newdata
A
base::data.frame()
ortibble::tibble()
containing all the original predictors used to createx
. Defaults toNULL
, indicating that nothing has been passed tonewdata
. Ifnewdata
is specified, thedata
argument will be ignored.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
Details
This tidier currently only supports ivreg
-classed objects
outputted by the AER
package. The ivreg
package also outputs
objects of class ivreg
, and will be supported in a later release.
See also
Other ivreg tidiers:
glance.ivreg()
,
tidy.ivreg()
Value
A tibble::tibble()
with columns:
- .fitted
Fitted or predicted value.
- .resid
The difference between observed and fitted values.
Examples
# load libraries for models and data
library(AER)
#> Loading required package: car
#> Loading required package: carData
#>
#> Attaching package: ‘car’
#> The following object is masked from ‘package:purrr’:
#>
#> some
#> The following object is masked from ‘package:dplyr’:
#>
#> recode
# load data
data("CigarettesSW", package = "AER")
# fit model
ivr <- ivreg(
log(packs) ~ income | population,
data = CigarettesSW,
subset = year == "1995"
)
# summarize model fit with tidiers
tidy(ivr)
#> # A tibble: 2 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 4.61e+ 0 4.45e- 2 104. 3.74e-56
#> 2 income -5.71e-10 2.33e-10 -2.44 1.84e- 2
tidy(ivr, conf.int = TRUE)
#> # A tibble: 2 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 4.61e+ 0 4.45e- 2 104. 3.74e-56 4.52e+0 4.70e+ 0
#> 2 income -5.71e-10 2.33e-10 -2.44 1.84e- 2 -1.03e-9 -1.13e-10
tidy(ivr, conf.int = TRUE, instruments = TRUE)
#> # A tibble: 1 × 5
#> term num.df den.df statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 income 1 46 3329. 1.46e-44
augment(ivr)
#> # A tibble: 48 × 6
#> .rownames `log(packs)` income population .fitted .resid
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 49 4.62 83903280 4262731 4.56 0.0522
#> 2 50 4.71 45995496 2480121 4.59 0.124
#> 3 51 4.28 88870496 4306908 4.56 -0.285
#> 4 52 4.04 771470144 31493524 4.17 -0.131
#> 5 53 4.41 92946544 3738061 4.56 -0.145
#> 6 54 4.38 104315120 3265293 4.55 -0.177
#> 7 55 4.82 18237436 718265 4.60 0.223
#> 8 56 4.53 333525344 14185403 4.42 0.112
#> 9 57 4.58 159800448 7188538 4.52 0.0591
#> 10 58 4.53 60170928 2840860 4.58 -0.0512
#> # ℹ 38 more rows
augment(ivr, data = CigarettesSW)
#> # A tibble: 96 × 11
#> state year cpi population packs income tax price taxs .fitted
#> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 AL 1985 1.08 3973000 116. 46014968 32.5 102. 33.3 4.56
#> 2 AR 1985 1.08 2327000 129. 26210736 37 101. 37 4.59
#> 3 AZ 1985 1.08 3184000 105. 43956936 31 109. 36.2 4.56
#> 4 CA 1985 1.08 26444000 100. 447102816 26 108. 32.1 4.17
#> 5 CO 1985 1.08 3209000 113. 49466672 31 94.3 31 4.56
#> 6 CT 1985 1.08 3201000 109. 60063368 42 128. 51.5 4.55
#> 7 DE 1985 1.08 618000 144. 9927301 30 102. 30 4.60
#> 8 FL 1985 1.08 11352000 122. 166919248 37 115. 42.5 4.42
#> 9 GA 1985 1.08 5963000 127. 78364336 28 97.0 28.8 4.52
#> 10 IA 1985 1.08 2830000 114. 37902896 34 102. 37.9 4.58
#> # ℹ 86 more rows
#> # ℹ 1 more variable: .resid <dbl>
augment(ivr, newdata = CigarettesSW)
#> # A tibble: 96 × 10
#> state year cpi population packs income tax price taxs .fitted
#> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 AL 1985 1.08 3973000 116. 46014968 32.5 102. 33.3 4.59
#> 2 AR 1985 1.08 2327000 129. 26210736 37 101. 37 4.60
#> 3 AZ 1985 1.08 3184000 105. 43956936 31 109. 36.2 4.59
#> 4 CA 1985 1.08 26444000 100. 447102816 26 108. 32.1 4.36
#> 5 CO 1985 1.08 3209000 113. 49466672 31 94.3 31 4.58
#> 6 CT 1985 1.08 3201000 109. 60063368 42 128. 51.5 4.58
#> 7 DE 1985 1.08 618000 144. 9927301 30 102. 30 4.61
#> 8 FL 1985 1.08 11352000 122. 166919248 37 115. 42.5 4.52
#> 9 GA 1985 1.08 5963000 127. 78364336 28 97.0 28.8 4.57
#> 10 IA 1985 1.08 2830000 114. 37902896 34 102. 37.9 4.59
#> # ℹ 86 more rows
glance(ivr)
#> # A tibble: 1 × 8
#> r.squared adj.r.squared sigma statistic p.value df df.residual nobs
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int> <int>
#> 1 0.131 0.112 0.229 5.98 0.0184 2 46 48