Skip to content

Augment accepts a model object and a dataset and adds information about each observation in the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in the .resid column, and standard errors for the fitted values in a .se.fit column. New columns always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user passes data to the data argument, it must be exactly the data that was used to fit the model object. Pass datasets to newdata to augment data that was not used during model fitting. This still requires that at least all predictor variable columns used to fit the model are present. If the original outcome variable used to fit the model is not included in newdata, then no .resid column will be included in the output.

Augment will often behave differently depending on whether data or newdata is given. This is because there is often information associated with training observations (such as influences or related) measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment(fit) will return the augmented training data. In these cases, augment tries to reconstruct the original data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters the model as part of a matrix of covariates, such as when the model formula uses splines::ns(), stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but make no guarantees about behavior when data is missing at this time.

Usage

# S3 method for class 'sarlm'
augment(x, data = x$X, ...)

Arguments

x

An object returned from spatialreg::lagsarlm() or spatialreg::errorsarlm().

data

Ignored, but included for internal consistency. See the details below.

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Two exceptions here are:

  • tidy() methods will warn when supplied an exponentiate argument if it will be ignored.

  • augment() methods will warn when supplied a newdata argument if it will be ignored.

Details

The predict method for sarlm objects assumes that the response is known. See ?predict.sarlm for more discussion. As a result, since the original data can be recovered from the fit object, this method currently does not take in data or newdata arguments.

See also

augment()

Other spatialreg tidiers: glance.sarlm(), tidy.sarlm()

Value

A tibble::tibble() with columns:

.fitted

Fitted or predicted value.

.resid

The difference between observed and fitted values.

Examples



# load libraries for models and data
library(spatialreg)
#> Loading required package: spData
#> To access larger datasets in this package, install the
#> spDataLarge package with: `install.packages('spDataLarge',
#> repos='https://nowosad.github.io/drat/', type='source')`
#> Loading required package: sf
#> Linking to GEOS 3.10.2, GDAL 3.4.1, PROJ 8.2.1; sf_use_s2() is TRUE
library(spdep)
#> 
#> Attaching package: ‘spdep’
#> The following objects are masked from ‘package:spatialreg’:
#> 
#>     get.ClusterOption, get.VerboseOption, get.ZeroPolicyOption,
#>     get.coresOption, get.mcOption, set.ClusterOption,
#>     set.VerboseOption, set.ZeroPolicyOption, set.coresOption,
#>     set.mcOption

# load data
data(oldcol, package = "spdep")

listw <- nb2listw(COL.nb, style = "W")

# fit model
crime_sar <-
  lagsarlm(CRIME ~ INC + HOVAL,
    data = COL.OLD,
    listw = listw,
    method = "eigen"
  )

# summarize model fit with tidiers
tidy(crime_sar)
#> # A tibble: 4 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 rho            0.431    0.118       3.66 2.50e- 4
#> 2 (Intercept)   45.1      7.18        6.28 3.37e-10
#> 3 INC           -1.03     0.305      -3.38 7.23e- 4
#> 4 HOVAL         -0.266    0.0885     -3.00 2.66e- 3
tidy(crime_sar, conf.int = TRUE)
#> # A tibble: 4 × 7
#>   term        estimate std.error statistic  p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 rho            0.431    0.118       3.66 2.50e- 4    0.200    0.662 
#> 2 (Intercept)   45.1      7.18        6.28 3.37e-10   31.0     59.1   
#> 3 INC           -1.03     0.305      -3.38 7.23e- 4   -1.63    -0.434 
#> 4 HOVAL         -0.266    0.0885     -3.00 2.66e- 3   -0.439   -0.0925
glance(crime_sar)
#> # A tibble: 1 × 6
#>   r.squared   AIC   BIC deviance logLik  nobs
#>       <dbl> <dbl> <dbl>    <dbl>  <dbl> <int>
#> 1     0.652  375.  384.    4679.  -182.    49
augment(crime_sar)
#> # A tibble: 49 × 6
#>    `(Intercept)`   INC HOVAL  CRIME .fitted .resid
#>            <dbl> <dbl> <dbl>  <dbl>   <dbl>  <dbl>
#>  1             1 21.2   44.6 18.8      22.6  -3.84
#>  2             1  4.48  33.2 32.4      46.6 -14.2 
#>  3             1 11.3   37.1 38.4      41.4  -2.97
#>  4             1  8.44  75    0.178    37.9 -37.7 
#>  5             1 19.5   80.5 15.7      14.2   1.54
#>  6             1 16.0   26.4 30.6      34.3  -3.66
#>  7             1 11.3   23.2 50.7      44.7   5.99
#>  8             1 16.0   28.8 26.1      38.4 -12.3 
#>  9             1  9.87  18   48.6      51.7  -3.12
#> 10             1 13.6   96.4 34.0      16.3  17.7 
#> # ℹ 39 more rows

# fit another model
crime_sem <- errorsarlm(CRIME ~ INC + HOVAL, data = COL.OLD, listw)

# summarize model fit with tidiers
tidy(crime_sem)
#> # A tibble: 4 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)   59.9      5.37       11.2  0        
#> 2 INC           -0.941    0.331      -2.85 0.00441  
#> 3 HOVAL         -0.302    0.0905     -3.34 0.000836 
#> 4 lambda         0.562    0.134       4.20 0.0000271
tidy(crime_sem, conf.int = TRUE)
#> # A tibble: 4 × 7
#>   term        estimate std.error statistic   p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>    <dbl>     <dbl>
#> 1 (Intercept)   59.9      5.37       11.2  0           49.4      70.4  
#> 2 INC           -0.941    0.331      -2.85 0.00441     -1.59     -0.293
#> 3 HOVAL         -0.302    0.0905     -3.34 0.000836    -0.480    -0.125
#> 4 lambda         0.562    0.134       4.20 0.0000271    0.299     0.824
glance(crime_sem)
#> # A tibble: 1 × 6
#>   r.squared   AIC   BIC deviance logLik  nobs
#>       <dbl> <dbl> <dbl>    <dbl>  <dbl> <int>
#> 1     0.658  377.  386.    4683.  -183.    49
augment(crime_sem)
#> # A tibble: 49 × 6
#>    `(Intercept)`   INC HOVAL  CRIME .fitted  .resid
#>            <dbl> <dbl> <dbl>  <dbl>   <dbl>   <dbl>
#>  1             1 21.2   44.6 18.8      22.5  -3.70 
#>  2             1  4.48  33.2 32.4      44.9 -12.5  
#>  3             1 11.3   37.1 38.4      38.2   0.223
#>  4             1  8.44  75    0.178    35.0 -34.8  
#>  5             1 19.5   80.5 15.7      13.3   2.45 
#>  6             1 16.0   26.4 30.6      35.0  -4.33 
#>  7             1 11.3   23.2 50.7      42.3   8.41 
#>  8             1 16.0   28.8 26.1      39.4 -13.3  
#>  9             1  9.87  18   48.6      49.3  -0.721
#> 10             1 13.6   96.4 34.0      16.6  17.4  
#> # ℹ 39 more rows

# fit another model
crime_sac <- sacsarlm(CRIME ~ INC + HOVAL, data = COL.OLD, listw)

# summarize model fit with tidiers
tidy(crime_sac)
#> # A tibble: 5 × 5
#>   term        estimate std.error statistic    p.value
#>   <chr>          <dbl>     <dbl>     <dbl>      <dbl>
#> 1 rho            0.368    0.197      1.87  0.0613    
#> 2 (Intercept)   47.8      9.90       4.83  0.00000140
#> 3 INC           -1.03     0.326     -3.14  0.00167   
#> 4 HOVAL         -0.282    0.0900    -3.13  0.00176   
#> 5 lambda         0.167    0.297      0.562 0.574     
tidy(crime_sac, conf.int = TRUE)
#> # A tibble: 5 × 7
#>   term        estimate std.error statistic    p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>     <dbl>      <dbl>    <dbl>     <dbl>
#> 1 rho            0.368    0.197      1.87  0.0613      -0.0174     0.754
#> 2 (Intercept)   47.8      9.90       4.83  0.00000140  28.4       67.2  
#> 3 INC           -1.03     0.326     -3.14  0.00167     -1.67      -0.386
#> 4 HOVAL         -0.282    0.0900    -3.13  0.00176     -0.458     -0.105
#> 5 lambda         0.167    0.297      0.562 0.574       -0.415      0.748
glance(crime_sac)
#> # A tibble: 1 × 6
#>   r.squared   AIC   BIC deviance logLik  nobs
#>       <dbl> <dbl> <dbl>    <dbl>  <dbl> <int>
#> 1     0.652  376.  388.    4685.  -182.    49
augment(crime_sac)
#> # A tibble: 49 × 6
#>    `(Intercept)`   INC HOVAL  CRIME .fitted .resid
#>            <dbl> <dbl> <dbl>  <dbl>   <dbl>  <dbl>
#>  1             1 21.2   44.6 18.8      22.2  -3.37
#>  2             1  4.48  33.2 32.4      46.4 -14.0 
#>  3             1 11.3   37.1 38.4      40.4  -2.00
#>  4             1  8.44  75    0.178    37.5 -37.3 
#>  5             1 19.5   80.5 15.7      13.5   2.25
#>  6             1 16.0   26.4 30.6      34.4  -3.74
#>  7             1 11.3   23.2 50.7      44.1   6.60
#>  8             1 16.0   28.8 26.1      39.0 -12.9 
#>  9             1  9.87  18   48.6      51.5  -2.93
#> 10             1 13.6   96.4 34.0      15.8  18.2 
#> # ℹ 39 more rows