Skip to content

Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

Usage

# S3 method for class 'smooth.spline'
augment(x, data = x$data, ...)

Arguments

x

A smooth.spline object returned from stats::smooth.spline().

data

A base::data.frame or tibble::tibble() containing the original data that was used to produce the object x. Defaults to stats::model.frame(x) so that augment(my_fit) returns the augmented original data. Do not pass new data to the data argument. Augment will report information such as influence and cooks distance for data passed to the data argument. These measures are only defined for the original training data.

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Two exceptions here are:

  • tidy() methods will warn when supplied an exponentiate argument if it will be ignored.

  • augment() methods will warn when supplied a newdata argument if it will be ignored.

Value

A tibble::tibble() with columns:

.fitted

Fitted or predicted value.

.resid

The difference between observed and fitted values.

Examples


# fit model
spl <- smooth.spline(mtcars$wt, mtcars$mpg, df = 4)

# summarize model fit with tidiers
augment(spl, mtcars)
#> # A tibble: 32 × 13
#>      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
#>  2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
#>  3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
#>  4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
#>  5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
#>  6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
#>  7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
#>  8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
#>  9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
#> 10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
#> # ℹ 22 more rows
#> # ℹ 2 more variables: .fitted <dbl>, .resid <dbl>

# calls original columns x and y
augment(spl)
#> # A tibble: 32 × 5
#>        x     y     w .fitted .resid
#>    <dbl> <dbl> <dbl>   <dbl>  <dbl>
#>  1  2.62  21       1    22.9 -1.87 
#>  2  2.88  21       1    21.1 -0.117
#>  3  2.32  22.8     1    25.3 -2.48 
#>  4  3.22  21.4     1    19.1  2.33 
#>  5  3.44  18.7     1    17.8  0.928
#>  6  3.46  18.1     1    17.7  0.437
#>  7  3.57  14.3     1    17.1 -2.79 
#>  8  3.19  24.4     1    19.2  5.19 
#>  9  3.15  22.8     1    19.5  3.35 
#> 10  3.44  19.2     1    17.8  1.43 
#> # ℹ 22 more rows

library(ggplot2)
ggplot(augment(spl, mtcars), aes(wt, mpg)) +
  geom_point() +
  geom_line(aes(y = .fitted))