Glance accepts a model object and returns a tibble::tibble()
with exactly one row of model summaries. The summaries are typically
goodness of fit measures, p-values for hypothesis tests on residuals,
or model convergence information.
Glance never returns information from the original call to the modeling function. This includes the name of the modeling function or any arguments passed to the modeling function.
Glance does not calculate summary measures. Rather, it farms out these
computations to appropriate methods and gathers the results together.
Sometimes a goodness of fit measure will be undefined. In these cases
the measure will be reported as NA
.
Glance returns the same number of columns regardless of whether the
model matrix is rank-deficient or not. If so, entries in columns
that no longer have a well-defined value are filled in with an NA
of the appropriate type.
Usage
# S3 method for class 'drc'
glance(x, ...)
Arguments
- x
A
drc
object produced by a call todrc::drm()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
See also
Other drc tidiers:
augment.drc()
,
tidy.drc()
Value
A tibble::tibble()
with exactly one row and columns:
- AIC
Akaike's Information Criterion for the model.
- BIC
Bayesian Information Criterion for the model.
- df.residual
Residual degrees of freedom.
- logLik
The log-likelihood of the model. [stats::logLik()] may be a useful reference.
- AICc
AIC corrected for small samples
Examples
# load libraries for models and data
library(drc)
# fit model
mod <- drm(dead / total ~ conc, type,
weights = total, data = selenium, fct = LL.2(), type = "binomial"
)
# summarize model fit with tidiers
tidy(mod)
#> # A tibble: 8 × 6
#> term curve estimate std.error statistic p.value
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 b 1 -1.50 0.155 -9.67 2.01e-22
#> 2 b 2 -0.843 0.139 -6.06 1.35e- 9
#> 3 b 3 -2.16 0.138 -15.7 1.65e-55
#> 4 b 4 -1.45 0.169 -8.62 3.41e-18
#> 5 e 1 252. 13.8 18.2 1.16e-74
#> 6 e 2 378. 39.4 9.61 3.53e-22
#> 7 e 3 120. 5.91 20.3 1.14e-91
#> 8 e 4 88.8 8.62 10.3 3.28e-25
tidy(mod, conf.int = TRUE)
#> # A tibble: 8 × 8
#> term curve estimate std.error statistic p.value conf.low conf.high
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 b 1 -1.50 0.155 -9.67 2.01e-22 -1.81 -1.20
#> 2 b 2 -0.843 0.139 -6.06 1.35e- 9 -1.12 -0.571
#> 3 b 3 -2.16 0.138 -15.7 1.65e-55 -2.43 -1.89
#> 4 b 4 -1.45 0.169 -8.62 3.41e-18 -1.78 -1.12
#> 5 e 1 252. 13.8 18.2 1.16e-74 225. 279.
#> 6 e 2 378. 39.4 9.61 3.53e-22 301. 456.
#> 7 e 3 120. 5.91 20.3 1.14e-91 108. 131.
#> 8 e 4 88.8 8.62 10.3 3.28e-25 71.9 106.
glance(mod)
#> # A tibble: 1 × 4
#> AIC BIC logLik df.residual
#> <dbl> <dbl> <logLik> <int>
#> 1 768. 778. -376.2099 17
augment(mod, selenium)
#> # A tibble: 25 × 7
#> type conc total dead .fitted .resid .cooksd
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0 151 3 0 0.0199 0
#> 2 1 100 146 40 0.199 0.0748 0.0000909
#> 3 1 200 116 31 0.414 -0.146 0.000104
#> 4 1 300 159 85 0.565 -0.0302 0.00000516
#> 5 1 400 150 102 0.667 0.0133 0.00000220
#> 6 1 500 140 112 0.737 0.0633 0.0000720
#> 7 2 0 141 2 0 0.0142 0
#> 8 2 100 153 30 0.246 -0.0495 0.000168
#> 9 2 200 142 59 0.369 0.0468 0.0000347
#> 10 2 300 139 82 0.451 0.139 0.0000430
#> # ℹ 15 more rows