Glance accepts a model object and returns a tibble::tibble()
with exactly one row of model summaries. The summaries are typically
goodness of fit measures, p-values for hypothesis tests on residuals,
or model convergence information.
Glance never returns information from the original call to the modeling function. This includes the name of the modeling function or any arguments passed to the modeling function.
Glance does not calculate summary measures. Rather, it farms out these
computations to appropriate methods and gathers the results together.
Sometimes a goodness of fit measure will be undefined. In these cases
the measure will be reported as NA
.
Glance returns the same number of columns regardless of whether the
model matrix is rank-deficient or not. If so, entries in columns
that no longer have a well-defined value are filled in with an NA
of the appropriate type.
Usage
# S3 method for class 'lmrob'
glance(x, ...)
Arguments
- x
A
lmrob
object returned fromrobustbase::lmrob()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
Details
For tidiers for robust models from the MASS package see
tidy.rlm()
.
See also
Other robustbase tidiers:
augment.glmrob()
,
augment.lmrob()
,
tidy.glmrob()
,
tidy.lmrob()
Value
A tibble::tibble()
with exactly one row and columns:
- df.residual
Residual degrees of freedom.
- r.squared
R squared statistic, or the percent of variation explained by the model. Also known as the coefficient of determination.
- sigma
Estimated standard error of the residuals.
Examples
if (requireNamespace("robustbase", quietly = TRUE)) {
# load libraries for models and data
library(robustbase)
data(coleman)
set.seed(0)
m <- lmrob(Y ~ ., data = coleman)
tidy(m)
augment(m)
glance(m)
data(carrots)
Rfit <- glmrob(cbind(success, total - success) ~ logdose + block,
family = binomial, data = carrots, method = "Mqle",
control = glmrobMqle.control(tcc = 1.2)
)
tidy(Rfit)
augment(Rfit)
}
#> # A tibble: 24 × 5
#> cbind(success, total - success…¹ [,""] logdose block .fitted .resid[,1]
#> <int> <int> <dbl> <fct> <dbl> <dbl>
#> 1 10 25 1.52 B1 -0.726 10.7
#> 2 16 26 1.64 B1 -0.972 17.0
#> 3 8 42 1.76 B1 -1.22 9.22
#> 4 6 36 1.88 B1 -1.46 7.46
#> 5 9 26 2 B1 -1.71 10.7
#> 6 9 33 2.12 B1 -1.96 11.0
#> 7 1 31 2.24 B1 -2.20 3.20
#> 8 2 26 2.36 B1 -2.45 4.45
#> 9 17 21 1.52 B2 -0.491 17.5
#> 10 10 30 1.64 B2 -0.737 10.7
#> # ℹ 14 more rows
#> # ℹ abbreviated name: ¹`cbind(success, total - success)`[,"success"]
#> # ℹ 1 more variable: .resid[2] <dbl>