Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'Kendall'
tidy(x, ...)
Arguments
- x
A
Kendall
object returned from a call toKendall::Kendall()
,Kendall::MannKendall()
, orKendall::SeasonalMannKendall()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
Value
A tibble::tibble()
with columns:
- kendall_score
Kendall score.
- p.value
The two-sided p-value associated with the observed statistic.
- var_kendall_score
Variance of the kendall_score.
- statistic
Kendall's tau statistic
- denominator
The denominator, which is tau=kendall_score/denominator.
Examples
# load libraries for models and data
library(Kendall)
A <- c(2.5, 2.5, 2.5, 2.5, 5, 6.5, 6.5, 10, 10, 10, 10, 10, 14, 14, 14, 16, 17)
B <- c(1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2)
# fit models and summarize results
f_res <- Kendall(A, B)
tidy(f_res)
#> # A tibble: 1 × 5
#> statistic p.value kendall_score denominator var_kendall_score
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.408 0.0754 34 83.4 345.
s_res <- MannKendall(B)
tidy(s_res)
#> # A tibble: 1 × 5
#> statistic p.value kendall_score denominator var_kendall_score
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.354 0.102 32 90.3 360
t_res <- SeasonalMannKendall(ts(A))
tidy(t_res)
#> # A tibble: 1 × 5
#> statistic p.value kendall_score denominator var_kendall_score
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.924 0.000000935 116 126. 559.