Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'betareg'
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)
Arguments
- x
A
betareg
object produced by a call tobetareg::betareg()
.- conf.int
Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to
FALSE
.- conf.level
The confidence level to use for the confidence interval if
conf.int = TRUE
. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
Details
The tibble has one row for each term in the regression. The
component
column indicates whether a particular
term was used to model either the "mean"
or "precision"
. Here the
precision is the inverse of the variance, often referred to as phi
.
At least one term will have been used to model the precision phi
.
Value
A tibble::tibble()
with columns:
- conf.high
Upper bound on the confidence interval for the estimate.
- conf.low
Lower bound on the confidence interval for the estimate.
- estimate
The estimated value of the regression term.
- p.value
The two-sided p-value associated with the observed statistic.
- statistic
The value of a T-statistic to use in a hypothesis that the regression term is non-zero.
- std.error
The standard error of the regression term.
- term
The name of the regression term.
- component
Whether a particular term was used to model the mean or the precision in the regression. See details.
Examples
# load libraries for models and data
library(betareg)
# load dats
data("GasolineYield", package = "betareg")
# fit model
mod <- betareg(yield ~ batch + temp, data = GasolineYield)
mod
#>
#> Call:
#> betareg(formula = yield ~ batch + temp, data = GasolineYield)
#>
#> Coefficients (mean model with logit link):
#> (Intercept) batch1 batch2 batch3 batch4
#> -6.15957 1.72773 1.32260 1.57231 1.05971
#> batch5 batch6 batch7 batch8 batch9
#> 1.13375 1.04016 0.54369 0.49590 0.38579
#> temp
#> 0.01097
#>
#> Phi coefficients (precision model with identity link):
#> (phi)
#> 440.3
#>
# summarize model fit with tidiers
tidy(mod)
#> # A tibble: 12 × 6
#> component term estimate std.error statistic p.value
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 mean (Intercept) -6.16 0.182 -33.8 3.44e-250
#> 2 mean batch1 1.73 0.101 17.1 2.59e- 65
#> 3 mean batch2 1.32 0.118 11.2 3.34e- 29
#> 4 mean batch3 1.57 0.116 13.5 8.81e- 42
#> 5 mean batch4 1.06 0.102 10.4 4.06e- 25
#> 6 mean batch5 1.13 0.104 11.0 6.52e- 28
#> 7 mean batch6 1.04 0.106 9.81 1.03e- 22
#> 8 mean batch7 0.544 0.109 4.98 6.29e- 7
#> 9 mean batch8 0.496 0.109 4.55 5.30e- 6
#> 10 mean batch9 0.386 0.119 3.25 1.14e- 3
#> 11 mean temp 0.0110 0.000413 26.6 1.26e-155
#> 12 precision (phi) 440. 110. 4.00 6.29e- 5
tidy(mod, conf.int = TRUE)
#> # A tibble: 12 × 8
#> component term estimate std.error statistic p.value conf.low
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 mean (Intercept) -6.16 0.182 -33.8 3.44e-250 -6.52
#> 2 mean batch1 1.73 0.101 17.1 2.59e- 65 1.53
#> 3 mean batch2 1.32 0.118 11.2 3.34e- 29 1.09
#> 4 mean batch3 1.57 0.116 13.5 8.81e- 42 1.34
#> 5 mean batch4 1.06 0.102 10.4 4.06e- 25 0.859
#> 6 mean batch5 1.13 0.104 11.0 6.52e- 28 0.931
#> 7 mean batch6 1.04 0.106 9.81 1.03e- 22 0.832
#> 8 mean batch7 0.544 0.109 4.98 6.29e- 7 0.330
#> 9 mean batch8 0.496 0.109 4.55 5.30e- 6 0.282
#> 10 mean batch9 0.386 0.119 3.25 1.14e- 3 0.153
#> 11 mean temp 0.0110 0.000413 26.6 1.26e-155 0.0102
#> 12 precision (phi) 440. 110. 4.00 6.29e- 5 225.
#> # ℹ 1 more variable: conf.high <dbl>
tidy(mod, conf.int = TRUE, conf.level = .99)
#> # A tibble: 12 × 8
#> component term estimate std.error statistic p.value conf.low
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 mean (Intercept) -6.16 0.182 -33.8 3.44e-250 -6.63
#> 2 mean batch1 1.73 0.101 17.1 2.59e- 65 1.47
#> 3 mean batch2 1.32 0.118 11.2 3.34e- 29 1.02
#> 4 mean batch3 1.57 0.116 13.5 8.81e- 42 1.27
#> 5 mean batch4 1.06 0.102 10.4 4.06e- 25 0.796
#> 6 mean batch5 1.13 0.104 11.0 6.52e- 28 0.867
#> 7 mean batch6 1.04 0.106 9.81 1.03e- 22 0.767
#> 8 mean batch7 0.544 0.109 4.98 6.29e- 7 0.263
#> 9 mean batch8 0.496 0.109 4.55 5.30e- 6 0.215
#> 10 mean batch9 0.386 0.119 3.25 1.14e- 3 0.0803
#> 11 mean temp 0.0110 0.000413 26.6 1.26e-155 0.00990
#> 12 precision (phi) 440. 110. 4.00 6.29e- 5 157.
#> # ℹ 1 more variable: conf.high <dbl>
augment(mod)
#> # A tibble: 32 × 6
#> yield batch temp .fitted .resid .cooksd
#> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 0.122 1 205 0.101 1.41 0.0791
#> 2 0.223 1 275 0.195 1.44 0.0917
#> 3 0.347 1 345 0.343 0.170 0.00155
#> 4 0.457 1 407 0.508 -2.14 0.606
#> 5 0.08 2 218 0.0797 0.0712 0.0000168
#> 6 0.131 2 273 0.137 -0.318 0.00731
#> 7 0.266 2 347 0.263 0.169 0.00523
#> 8 0.074 3 212 0.0943 -1.52 0.0805
#> 9 0.182 3 272 0.167 0.831 0.0441
#> 10 0.304 3 340 0.298 0.304 0.0170
#> # ℹ 22 more rows
glance(mod)
#> # A tibble: 1 × 7
#> pseudo.r.squared df.null logLik AIC BIC df.residual nobs
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int>
#> 1 0.962 30 84.8 -146. -128. 20 32