Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'coeftest'
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)
Arguments
- x
A
coeftest
object returned fromlmtest::coeftest()
.- conf.int
Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to
FALSE
.- conf.level
The confidence level to use for the confidence interval if
conf.int = TRUE
. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
Value
A tibble::tibble()
with columns:
- conf.high
Upper bound on the confidence interval for the estimate.
- conf.low
Lower bound on the confidence interval for the estimate.
- estimate
The estimated value of the regression term.
- p.value
The two-sided p-value associated with the observed statistic.
- statistic
The value of a T-statistic to use in a hypothesis that the regression term is non-zero.
- std.error
The standard error of the regression term.
- term
The name of the regression term.
Examples
# load libraries for models and data
library(lmtest)
m <- lm(dist ~ speed, data = cars)
coeftest(m)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -17.57909 6.75844 -2.6011 0.01232 *
#> speed 3.93241 0.41551 9.4640 1.49e-12 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
tidy(coeftest(m))
#> # A tibble: 2 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -17.6 6.76 -2.60 1.23e- 2
#> 2 speed 3.93 0.416 9.46 1.49e-12
tidy(coeftest(m, conf.int = TRUE))
#> # A tibble: 2 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -17.6 6.76 -2.60 1.23e- 2
#> 2 speed 3.93 0.416 9.46 1.49e-12
# a very common workflow is to combine lmtest::coeftest with alternate
# variance-covariance matrices via the sandwich package. The lmtest
# tidiers support this workflow too, enabling you to adjust the standard
# errors of your tidied models on the fly.
library(sandwich)
# "HC3" (default) robust SEs
tidy(coeftest(m, vcov = vcovHC))
#> # A tibble: 2 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -17.6 5.93 -2.96 4.72e- 3
#> 2 speed 3.93 0.428 9.20 3.64e-12
# "HC2" robust SEs
tidy(coeftest(m, vcov = vcovHC, type = "HC2"))
#> # A tibble: 2 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -17.6 5.73 -3.07 3.55e- 3
#> 2 speed 3.93 0.413 9.53 1.21e-12
# N-W HAC robust SEs
tidy(coeftest(m, vcov = NeweyWest))
#> # A tibble: 2 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -17.6 7.02 -2.50 0.0157
#> 2 speed 3.93 0.551 7.14 0.00000000453
# the columns of the returned tibble for glance.coeftest() will vary
# depending on whether the coeftest object retains the underlying model.
# Users can control this with the "save = TRUE" argument of coeftest().
glance(coeftest(m))
#> # A tibble: 1 × 4
#> logLik AIC BIC nobs
#> <chr> <dbl> <dbl> <int>
#> 1 -206.578 419. 425. 50
glance(coeftest(m, save = TRUE))
#> # A tibble: 1 × 12
#> r.squared adj.r.squared sigma statistic p.value df logLik AIC
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.651 0.644 15.4 89.6 1.49e-12 1 -207. 419.
#> # ℹ 4 more variables: BIC <dbl>, deviance <dbl>, df.residual <int>,
#> # nobs <int>