Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Arguments
- x
A
epi.2by2
object produced by a call toepiR::epi.2by2()
- parameters
Return measures of association (
moa
) or test statistics (stat
), default ismoa
(measures of association)- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
Details
The tibble has a column for each of the measures of association
or tests contained in massoc
or massoc.detail
when epiR::epi.2by2()
is called.
Value
A tibble::tibble()
with columns:
- conf.high
Upper bound on the confidence interval for the estimate.
- conf.low
Lower bound on the confidence interval for the estimate.
- df
Degrees of freedom used by this term in the model.
- p.value
The two-sided p-value associated with the observed statistic.
- statistic
The value of a T-statistic to use in a hypothesis that the regression term is non-zero.
- term
The name of the regression term.
- estimate
Estimated measure of association
Examples
# load libraries for models and data
library(epiR)
#> Package epiR 2.0.76 is loaded
#> Type help(epi.about) for summary information
#> Type browseVignettes(package = 'epiR') to learn how to use epiR for applied epidemiological analyses
#>
# generate data
dat <- matrix(c(13, 2163, 5, 3349), nrow = 2, byrow = TRUE)
rownames(dat) <- c("DF+", "DF-")
colnames(dat) <- c("FUS+", "FUS-")
# fit model
fit <- epi.2by2(
dat = as.table(dat), method = "cross.sectional",
conf.level = 0.95, units = 100, outcome = "as.columns"
)
# summarize model fit with tidiers
tidy(fit, parameters = "moa")
#> # A tibble: 15 × 4
#> term estimate conf.low conf.high
#> <chr> <dbl> <dbl> <dbl>
#> 1 PR.strata.wald 4.01 1.43 11.2
#> 2 PR.strata.taylor 4.01 1.43 11.2
#> 3 PR.strata.score 1.84 1.25 2.24
#> 4 OR.strata.wald 4.03 1.43 11.3
#> 5 OR.strata.cfield 4.03 NA NA
#> 6 OR.strata.score 4.03 1.49 10.9
#> 7 OR.strata.mle 4.02 1.34 14.4
#> 8 ARisk.strata.wald 0.448 0.0992 0.797
#> 9 ARisk.strata.score 0.448 0.142 0.882
#> 10 NNT.strata.wald 223. 125. 1008.
#> 11 NNT.strata.score 223. 113. 705.
#> 12 PARisk.strata.wald 0.176 -0.0225 0.375
#> 13 PARisk.strata.piri 0.176 0.0389 0.314
#> 14 AFRisk.strata.wald 0.750 0.301 0.911
#> 15 PAFRisk.strata.wald 0.542 0.0361 0.782
tidy(fit, parameters = "stat")
#> # A tibble: 3 × 4
#> term statistic df p.value
#> <chr> <dbl> <dbl> <dbl>
#> 1 chi2.strata.uncor 8.18 1 0.00424
#> 2 chi2.strata.yates 6.85 1 0.00885
#> 3 chi2.strata.fisher NA NA 0.00635