Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'kde'
tidy(x, ...)
Arguments
- x
A
kde
object returned fromks::kde()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
Details
Returns a data frame in long format with four columns. Use
tidyr::pivot_wider(..., names_from = variable, values_from = value)
on the output to return to a wide format.
Value
A tibble::tibble()
with columns:
- estimate
The estimated value of the regression term.
- obs
weighted observed number of events in each group.
- value
The value/estimate of the component. Results from data reshaping.
- variable
Variable under consideration.
Examples
# load libraries for models and data
library(ks)
# generate data
dat <- replicate(2, rnorm(100))
k <- kde(dat)
# summarize model fit with tidiers + visualization
td <- tidy(k)
td
#> # A tibble: 45,602 × 4
#> obs variable value estimate
#> <int> <chr> <dbl> <dbl>
#> 1 1 x1 -5.41 0
#> 2 2 x1 -5.34 0
#> 3 3 x1 -5.28 0
#> 4 4 x1 -5.22 0
#> 5 5 x1 -5.15 0
#> 6 6 x1 -5.09 0
#> 7 7 x1 -5.03 0
#> 8 8 x1 -4.96 0
#> 9 9 x1 -4.90 0
#> 10 10 x1 -4.84 0
#> # ℹ 45,592 more rows
library(ggplot2)
library(dplyr)
library(tidyr)
td %>%
pivot_wider(c(obs, estimate),
names_from = variable,
values_from = value
) %>%
ggplot(aes(x1, x2, fill = estimate)) +
geom_tile() +
theme_void()
#> Warning: Specifying the `id_cols` argument by position was deprecated in tidyr
#> 1.3.0.
#> ℹ Please explicitly name `id_cols`, like `id_cols = c(obs, estimate)`.
# also works with 3 dimensions
dat3 <- replicate(3, rnorm(100))
k3 <- kde(dat3)
td3 <- tidy(k3)
td3
#> # A tibble: 397,953 × 4
#> obs variable value estimate
#> <int> <chr> <dbl> <dbl>
#> 1 1 x1 -4.77 0
#> 2 2 x1 -4.59 0
#> 3 3 x1 -4.41 0
#> 4 4 x1 -4.23 0
#> 5 5 x1 -4.05 0
#> 6 6 x1 -3.87 0
#> 7 7 x1 -3.69 0
#> 8 8 x1 -3.51 0
#> 9 9 x1 -3.33 0
#> 10 10 x1 -3.15 0
#> # ℹ 397,943 more rows