Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'mediate'
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)
Arguments
- x
A
mediate
object produced by a call tomediation::mediate()
.- conf.int
Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to
FALSE
.- conf.level
The confidence level to use for the confidence interval if
conf.int = TRUE
. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
Details
The tibble has four rows. The first two indicate the mediated effect in the control and treatment groups, respectively. And the last two the direct effect in each group.
Value
A tibble::tibble()
with columns:
- conf.high
Upper bound on the confidence interval for the estimate.
- conf.low
Lower bound on the confidence interval for the estimate.
- estimate
The estimated value of the regression term.
- p.value
The two-sided p-value associated with the observed statistic.
- statistic
The value of a T-statistic to use in a hypothesis that the regression term is non-zero.
- std.error
The standard error of the regression term.
- term
The name of the regression term.
Examples
# load libraries for models and data
library(mediation)
#> mediation: Causal Mediation Analysis
#> Version: 4.5.0
#>
#> Attaching package: ‘mediation’
#> The following object is masked from ‘package:psych’:
#>
#> mediate
data(jobs)
# fit models
b <- lm(job_seek ~ treat + econ_hard + sex + age, data = jobs)
c <- lm(depress2 ~ treat + job_seek + econ_hard + sex + age, data = jobs)
mod <- mediate(b, c, sims = 50, treat = "treat", mediator = "job_seek")
# summarize model fit with tidiers
tidy(mod)
#> # A tibble: 4 × 4
#> term estimate std.error p.value
#> <chr> <dbl> <dbl> <dbl>
#> 1 acme_0 -0.0143 0.0129 0.24
#> 2 acme_1 -0.0143 0.0129 0.24
#> 3 ade_0 -0.0315 0.0377 0.24
#> 4 ade_1 -0.0315 0.0377 0.24
tidy(mod, conf.int = TRUE)
#> # A tibble: 4 × 6
#> term estimate std.error p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 acme_0 -0.0143 0.0129 0.24 -0.0349 0.0103
#> 2 acme_1 -0.0143 0.0129 0.24 -0.0349 0.0103
#> 3 ade_0 -0.0315 0.0377 0.24 -0.105 0.0584
#> 4 ade_1 -0.0315 0.0377 0.24 -0.105 0.0584
tidy(mod, conf.int = TRUE, conf.level = .99)
#> # A tibble: 4 × 6
#> term estimate std.error p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 acme_0 -0.0143 0.0129 0.24 -0.0378 0.0243
#> 2 acme_1 -0.0143 0.0129 0.24 -0.0378 0.0243
#> 3 ade_0 -0.0315 0.0377 0.24 -0.106 0.0686
#> 4 ade_1 -0.0315 0.0377 0.24 -0.106 0.0686