Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'regsubsets'
tidy(x, ...)
Arguments
- x
A
regsubsets
object created byleaps::regsubsets()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
Value
A tibble::tibble()
with columns:
- r.squared
R squared statistic, or the percent of variation explained by the model.
- adj.r.squared
Adjusted R squared statistic
- BIC
Bayesian information criterion for the component.
- mallows_cp
Mallow's Cp statistic.
Examples
# load libraries for models and data
library(leaps)
# fit model
all_fits <- regsubsets(hp ~ ., mtcars)
# summarize model fit with tidiers
tidy(all_fits)
#> # A tibble: 8 × 15
#> `(Intercept)` mpg cyl disp drat wt qsec vs am gear
#> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl>
#> 1 TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> 2 TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#> 3 TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
#> 4 TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
#> 5 TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
#> 6 TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
#> 7 TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE
#> 8 TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE
#> # ℹ 5 more variables: carb <lgl>, r.squared <dbl>, adj.r.squared <dbl>,
#> # BIC <dbl>, mallows_cp <dbl>