Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'speedlm'
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)
Arguments
- x
A
speedlm
object returned fromspeedglm::speedlm()
.- conf.int
Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to
FALSE
.- conf.level
The confidence level to use for the confidence interval if
conf.int = TRUE
. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
See also
speedglm::speedlm()
, tidy.lm()
Other speedlm tidiers:
augment.speedlm()
,
glance.speedglm()
,
glance.speedlm()
,
tidy.speedglm()
Value
A tibble::tibble()
with columns:
- conf.high
Upper bound on the confidence interval for the estimate.
- conf.low
Lower bound on the confidence interval for the estimate.
- estimate
The estimated value of the regression term.
- p.value
The two-sided p-value associated with the observed statistic.
- statistic
The value of a T-statistic to use in a hypothesis that the regression term is non-zero.
- std.error
The standard error of the regression term.
- term
The name of the regression term.
Examples
# load modeling library
library(speedglm)
# fit model
mod <- speedlm(mpg ~ wt + qsec, data = mtcars, fitted = TRUE)
# summarize model fit with tidiers
tidy(mod)
#> # A tibble: 3 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 19.7 5.25 3.76 7.65e- 4
#> 2 wt -5.05 0.484 -10.4 2.52e-11
#> 3 qsec 0.929 0.265 3.51 1.50e- 3
glance(mod)
#> # A tibble: 1 × 11
#> r.squared adj.r.squared statistic p.value df logLik AIC BIC
#> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 0.826 0.814 69.0 9.39e-12 3 -74.4 157. 163.
#> # ℹ 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
augment(mod)
#> # A tibble: 32 × 6
#> .rownames mpg wt qsec .fitted .resid
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 2.62 16.5 21.8 -0.815
#> 2 Mazda RX4 Wag 21 2.88 17.0 21.0 -0.0482
#> 3 Datsun 710 22.8 2.32 18.6 25.3 -2.53
#> 4 Hornet 4 Drive 21.4 3.22 19.4 21.6 -0.181
#> 5 Hornet Sportabout 18.7 3.44 17.0 18.2 0.504
#> 6 Valiant 18.1 3.46 20.2 21.1 -2.97
#> 7 Duster 360 14.3 3.57 15.8 16.4 -2.14
#> 8 Merc 240D 24.4 3.19 20 22.2 2.17
#> 9 Merc 230 22.8 3.15 22.9 25.1 -2.32
#> 10 Merc 280 19.2 3.44 18.3 19.4 -0.185
#> # ℹ 22 more rows