Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'systemfit'
tidy(x, conf.int = TRUE, conf.level = 0.95, ...)
Arguments
- x
A
systemfit
object produced by a call tosystemfit::systemfit()
.- conf.int
Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to
FALSE
.- conf.level
The confidence level to use for the confidence interval if
conf.int = TRUE
. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
Details
This tidy method works with any model objects of class systemfit
.
Default returns a tibble of six columns.
Value
A tibble::tibble()
with columns:
- conf.high
Upper bound on the confidence interval for the estimate.
- conf.low
Lower bound on the confidence interval for the estimate.
- estimate
The estimated value of the regression term.
- p.value
The two-sided p-value associated with the observed statistic.
- std.error
The standard error of the regression term.
- term
The name of the regression term.
Examples
set.seed(27)
# load libraries for models and data
library(systemfit)
#>
#> Please cite the 'systemfit' package as:
#> Arne Henningsen and Jeff D. Hamann (2007). systemfit: A Package for Estimating Systems of Simultaneous Equations in R. Journal of Statistical Software 23(4), 1-40. http://www.jstatsoft.org/v23/i04/.
#>
#> If you have questions, suggestions, or comments regarding the 'systemfit' package, please use a forum or 'tracker' at systemfit's R-Forge site:
#> https://r-forge.r-project.org/projects/systemfit/
# generate data
df <- data.frame(
X = rnorm(100),
Y = rnorm(100),
Z = rnorm(100),
W = rnorm(100)
)
# fit model
fit <- systemfit(formula = list(Y ~ Z, W ~ X), data = df, method = "SUR")
# summarize model fit with tidiers
tidy(fit)
#> # A tibble: 4 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 eq1_(Intercept) 0.109 0.0981 1.11 0.269 -0.0857 0.304
#> 2 eq1_Z -0.0808 0.0934 -0.865 0.389 -0.266 0.105
#> 3 eq2_(Intercept) -0.0495 0.110 -0.449 0.655 -0.269 0.170
#> 4 eq2_X -0.133 0.103 -1.30 0.198 -0.337 0.0707
tidy(fit, conf.int = TRUE)
#> # A tibble: 4 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 eq1_(Intercept) 0.109 0.0981 1.11 0.269 -0.0857 0.304
#> 2 eq1_Z -0.0808 0.0934 -0.865 0.389 -0.266 0.105
#> 3 eq2_(Intercept) -0.0495 0.110 -0.449 0.655 -0.269 0.170
#> 4 eq2_X -0.133 0.103 -1.30 0.198 -0.337 0.0707