Glance accepts a model object and returns a tibble::tibble()
with exactly one row of model summaries. The summaries are typically
goodness of fit measures, p-values for hypothesis tests on residuals,
or model convergence information.
Glance never returns information from the original call to the modeling function. This includes the name of the modeling function or any arguments passed to the modeling function.
Glance does not calculate summary measures. Rather, it farms out these
computations to appropriate methods and gathers the results together.
Sometimes a goodness of fit measure will be undefined. In these cases
the measure will be reported as NA
.
Glance returns the same number of columns regardless of whether the
model matrix is rank-deficient or not. If so, entries in columns
that no longer have a well-defined value are filled in with an NA
of the appropriate type.
Usage
# S3 method for class 'biglm'
glance(x, ...)
Arguments
- x
A
biglm
object created by a call tobiglm::biglm()
orbiglm::bigglm()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
See also
glance()
, biglm::biglm()
, biglm::bigglm()
Other biglm tidiers:
tidy.biglm()
Value
A tibble::tibble()
with exactly one row and columns:
- AIC
Akaike's Information Criterion for the model.
- deviance
Deviance of the model.
- df.residual
Residual degrees of freedom.
- nobs
Number of observations used.
- r.squared
R squared statistic, or the percent of variation explained by the model. Also known as the coefficient of determination.
Examples
# load modeling library
library(biglm)
# fit model -- linear regression
bfit <- biglm(mpg ~ wt + disp, mtcars)
# summarize model fit with tidiers
tidy(bfit)
#> # A tibble: 3 × 4
#> term estimate std.error p.value
#> <chr> <dbl> <dbl> <dbl>
#> 1 (Intercept) 35.0 2.16 1.11e-58
#> 2 wt -3.35 1.16 4.00e- 3
#> 3 disp -0.0177 0.00919 5.38e- 2
tidy(bfit, conf.int = TRUE)
#> # A tibble: 3 × 6
#> term estimate std.error p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 35.0 2.16 1.11e-58 30.7 39.2
#> 2 wt -3.35 1.16 4.00e- 3 -5.63 -1.07
#> 3 disp -0.0177 0.00919 5.38e- 2 -0.0357 0.000288
tidy(bfit, conf.int = TRUE, conf.level = .9)
#> # A tibble: 3 × 6
#> term estimate std.error p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 35.0 2.16 1.11e-58 31.4 38.5
#> 2 wt -3.35 1.16 4.00e- 3 -5.27 -1.44
#> 3 disp -0.0177 0.00919 5.38e- 2 -0.0328 -0.00261
glance(bfit)
#> # A tibble: 1 × 5
#> r.squared AIC deviance df.residual nobs
#> <dbl> <dbl> <dbl> <int> <int>
#> 1 0.781 253. 247. 29 32
# fit model -- logistic regression
bgfit <- bigglm(am ~ mpg, mtcars, family = binomial())
# summarize model fit with tidiers
tidy(bgfit)
#> # A tibble: 2 × 4
#> term estimate std.error p.value
#> <chr> <dbl> <dbl> <dbl>
#> 1 (Intercept) -6.60 2.35 0.00498
#> 2 mpg 0.307 0.115 0.00751
tidy(bgfit, exponentiate = TRUE)
#> # A tibble: 2 × 4
#> term estimate std.error p.value
#> <chr> <dbl> <dbl> <dbl>
#> 1 (Intercept) 0.00136 2.35 0.00498
#> 2 mpg 1.36 0.115 0.00751
tidy(bgfit, conf.int = TRUE)
#> # A tibble: 2 × 6
#> term estimate std.error p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -6.60 2.35 0.00498 -11.2 -1.99
#> 2 mpg 0.307 0.115 0.00751 0.0819 0.532
tidy(bgfit, conf.int = TRUE, conf.level = .9)
#> # A tibble: 2 × 6
#> term estimate std.error p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -6.60 2.35 0.00498 -10.5 -2.74
#> 2 mpg 0.307 0.115 0.00751 0.118 0.496
tidy(bgfit, conf.int = TRUE, conf.level = .9, exponentiate = TRUE)
#> # A tibble: 2 × 6
#> term estimate std.error p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 0.00136 2.35 0.00498 0.0000283 0.0648
#> 2 mpg 1.36 0.115 0.00751 1.13 1.64
glance(bgfit)
#> # A tibble: 1 × 5
#> r.squared AIC deviance df.residual nobs
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.175 33.7 29.7 30 32