Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'biglm'
tidy(x, conf.int = FALSE, conf.level = 0.95, exponentiate = FALSE, ...)
Arguments
- x
A
biglm
object created by a call tobiglm::biglm()
orbiglm::bigglm()
.- conf.int
Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to
FALSE
.- conf.level
The confidence level to use for the confidence interval if
conf.int = TRUE
. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.- exponentiate
Logical indicating whether or not to exponentiate the the coefficient estimates. This is typical for logistic and multinomial regressions, but a bad idea if there is no log or logit link. Defaults to
FALSE
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
See also
tidy()
, biglm::biglm()
, biglm::bigglm()
Other biglm tidiers:
glance.biglm()
Value
A tibble::tibble()
with columns:
- conf.high
Upper bound on the confidence interval for the estimate.
- conf.low
Lower bound on the confidence interval for the estimate.
- estimate
The estimated value of the regression term.
- p.value
The two-sided p-value associated with the observed statistic.
- statistic
The value of a T-statistic to use in a hypothesis that the regression term is non-zero.
- std.error
The standard error of the regression term.
- term
The name of the regression term.
Examples
# load modeling library
library(biglm)
# fit model -- linear regression
bfit <- biglm(mpg ~ wt + disp, mtcars)
# summarize model fit with tidiers
tidy(bfit)
#> # A tibble: 3 × 4
#> term estimate std.error p.value
#> <chr> <dbl> <dbl> <dbl>
#> 1 (Intercept) 35.0 2.16 1.11e-58
#> 2 wt -3.35 1.16 4.00e- 3
#> 3 disp -0.0177 0.00919 5.38e- 2
tidy(bfit, conf.int = TRUE)
#> # A tibble: 3 × 6
#> term estimate std.error p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 35.0 2.16 1.11e-58 30.7 39.2
#> 2 wt -3.35 1.16 4.00e- 3 -5.63 -1.07
#> 3 disp -0.0177 0.00919 5.38e- 2 -0.0357 0.000288
tidy(bfit, conf.int = TRUE, conf.level = .9)
#> # A tibble: 3 × 6
#> term estimate std.error p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 35.0 2.16 1.11e-58 31.4 38.5
#> 2 wt -3.35 1.16 4.00e- 3 -5.27 -1.44
#> 3 disp -0.0177 0.00919 5.38e- 2 -0.0328 -0.00261
glance(bfit)
#> # A tibble: 1 × 5
#> r.squared AIC deviance df.residual nobs
#> <dbl> <dbl> <dbl> <int> <int>
#> 1 0.781 253. 247. 29 32
# fit model -- logistic regression
bgfit <- bigglm(am ~ mpg, mtcars, family = binomial())
# summarize model fit with tidiers
tidy(bgfit)
#> # A tibble: 2 × 4
#> term estimate std.error p.value
#> <chr> <dbl> <dbl> <dbl>
#> 1 (Intercept) -6.60 2.35 0.00498
#> 2 mpg 0.307 0.115 0.00751
tidy(bgfit, exponentiate = TRUE)
#> # A tibble: 2 × 4
#> term estimate std.error p.value
#> <chr> <dbl> <dbl> <dbl>
#> 1 (Intercept) 0.00136 2.35 0.00498
#> 2 mpg 1.36 0.115 0.00751
tidy(bgfit, conf.int = TRUE)
#> # A tibble: 2 × 6
#> term estimate std.error p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -6.60 2.35 0.00498 -11.2 -1.99
#> 2 mpg 0.307 0.115 0.00751 0.0819 0.532
tidy(bgfit, conf.int = TRUE, conf.level = .9)
#> # A tibble: 2 × 6
#> term estimate std.error p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -6.60 2.35 0.00498 -10.5 -2.74
#> 2 mpg 0.307 0.115 0.00751 0.118 0.496
tidy(bgfit, conf.int = TRUE, conf.level = .9, exponentiate = TRUE)
#> # A tibble: 2 × 6
#> term estimate std.error p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 0.00136 2.35 0.00498 0.0000283 0.0648
#> 2 mpg 1.36 0.115 0.00751 1.13 1.64
glance(bgfit)
#> # A tibble: 1 × 5
#> r.squared AIC deviance df.residual nobs
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.175 33.7 29.7 30 32