Glance accepts a model object and returns a tibble::tibble()
with exactly one row of model summaries. The summaries are typically
goodness of fit measures, p-values for hypothesis tests on residuals,
or model convergence information.
Glance never returns information from the original call to the modeling function. This includes the name of the modeling function or any arguments passed to the modeling function.
Glance does not calculate summary measures. Rather, it farms out these
computations to appropriate methods and gathers the results together.
Sometimes a goodness of fit measure will be undefined. In these cases
the measure will be reported as NA
.
Glance returns the same number of columns regardless of whether the
model matrix is rank-deficient or not. If so, entries in columns
that no longer have a well-defined value are filled in with an NA
of the appropriate type.
Usage
# S3 method for class 'multinom'
glance(x, ...)
Arguments
- x
A
multinom
object returned fromnnet::multinom()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
See also
Other multinom tidiers:
tidy.multinom()
Value
A tibble::tibble()
with exactly one row and columns:
- AIC
Akaike's Information Criterion for the model.
- deviance
Deviance of the model.
- edf
The effective degrees of freedom.
- nobs
Number of observations used.
Examples
# load libraries for models and data
library(nnet)
#>
#> Attaching package: ‘nnet’
#> The following object is masked from ‘package:mgcv’:
#>
#> multinom
library(MASS)
example(birthwt)
#>
#> brthwt> bwt <- with(birthwt, {
#> brthwt+ race <- factor(race, labels = c("white", "black", "other"))
#> brthwt+ ptd <- factor(ptl > 0)
#> brthwt+ ftv <- factor(ftv)
#> brthwt+ levels(ftv)[-(1:2)] <- "2+"
#> brthwt+ data.frame(low = factor(low), age, lwt, race, smoke = (smoke > 0),
#> brthwt+ ptd, ht = (ht > 0), ui = (ui > 0), ftv)
#> brthwt+ })
#>
#> brthwt> options(contrasts = c("contr.treatment", "contr.poly"))
#>
#> brthwt> glm(low ~ ., binomial, bwt)
#>
#> Call: glm(formula = low ~ ., family = binomial, data = bwt)
#>
#> Coefficients:
#> (Intercept) age lwt raceblack raceother
#> 0.82302 -0.03723 -0.01565 1.19241 0.74068
#> smokeTRUE ptdTRUE htTRUE uiTRUE ftv1
#> 0.75553 1.34376 1.91317 0.68020 -0.43638
#> ftv2+
#> 0.17901
#>
#> Degrees of Freedom: 188 Total (i.e. Null); 178 Residual
#> Null Deviance: 234.7
#> Residual Deviance: 195.5 AIC: 217.5
bwt.mu <- multinom(low ~ ., bwt)
#> # weights: 12 (11 variable)
#> initial value 131.004817
#> iter 10 value 98.029803
#> final value 97.737759
#> converged
tidy(bwt.mu)
#> # A tibble: 11 × 6
#> y.level term estimate std.error statistic p.value
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 1 (Intercept) 0.823 1.24 0.661 0.508
#> 2 1 age -0.0372 0.0387 -0.962 0.336
#> 3 1 lwt -0.0157 0.00708 -2.21 0.0271
#> 4 1 raceblack 1.19 0.536 2.22 0.0261
#> 5 1 raceother 0.741 0.462 1.60 0.109
#> 6 1 smokeTRUE 0.756 0.425 1.78 0.0755
#> 7 1 ptdTRUE 1.34 0.481 2.80 0.00518
#> 8 1 htTRUE 1.91 0.721 2.65 0.00794
#> 9 1 uiTRUE 0.680 0.464 1.46 0.143
#> 10 1 ftv1 -0.436 0.479 -0.910 0.363
#> 11 1 ftv2+ 0.179 0.456 0.392 0.695
glance(bwt.mu)
#> # A tibble: 1 × 4
#> edf deviance AIC nobs
#> <dbl> <dbl> <dbl> <int>
#> 1 11 195. 217. 189
# or, for output from a multinomial logistic regression
fit.gear <- multinom(gear ~ mpg + factor(am), data = mtcars)
#> # weights: 12 (6 variable)
#> initial value 35.155593
#> iter 10 value 14.156582
#> iter 20 value 14.031881
#> iter 30 value 14.025659
#> iter 40 value 14.021414
#> iter 50 value 14.019824
#> iter 60 value 14.019278
#> iter 70 value 14.018601
#> iter 80 value 14.018282
#> iter 80 value 14.018282
#> iter 90 value 14.017126
#> final value 14.015374
#> converged
tidy(fit.gear)
#> # A tibble: 6 × 6
#> y.level term estimate std.error statistic p.value
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 4 (Intercept) -11.2 5.32 -2.10 3.60e- 2
#> 2 4 mpg 0.525 0.268 1.96 5.02e- 2
#> 3 4 factor(am)1 11.9 66.9 0.178 8.59e- 1
#> 4 5 (Intercept) -18.4 67.9 -0.271 7.87e- 1
#> 5 5 mpg 0.366 0.292 1.25 2.10e- 1
#> 6 5 factor(am)1 22.4 2.17 10.3 4.54e-25
glance(fit.gear)
#> # A tibble: 1 × 4
#> edf deviance AIC nobs
#> <dbl> <dbl> <dbl> <int>
#> 1 6 28.0 40.0 32