Glance accepts a model object and returns a tibble::tibble()
with exactly one row of model summaries. The summaries are typically
goodness of fit measures, p-values for hypothesis tests on residuals,
or model convergence information.
Glance never returns information from the original call to the modeling function. This includes the name of the modeling function or any arguments passed to the modeling function.
Glance does not calculate summary measures. Rather, it farms out these
computations to appropriate methods and gathers the results together.
Sometimes a goodness of fit measure will be undefined. In these cases
the measure will be reported as NA
.
Glance returns the same number of columns regardless of whether the
model matrix is rank-deficient or not. If so, entries in columns
that no longer have a well-defined value are filled in with an NA
of the appropriate type.
Usage
# S3 method for class 'orcutt'
glance(x, ...)
Arguments
- x
An
orcutt
object returned fromorcutt::cochrane.orcutt()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
See also
glance()
, orcutt::cochrane.orcutt()
Other orcutt tidiers:
tidy.orcutt()
Value
A tibble::tibble()
with exactly one row and columns:
- adj.r.squared
Adjusted R squared statistic, which is like the R squared statistic except taking degrees of freedom into account.
- dw.original
Durbin-Watson statistic of original fit.
- dw.transformed
Durbin-Watson statistic of transformed fit.
- nobs
Number of observations used.
- number.interaction
Number of interactions.
- p.value.original
P-value of original Durbin-Watson statistic.
- p.value.transformed
P-value of autocorrelation after transformation.
- r.squared
R squared statistic, or the percent of variation explained by the model. Also known as the coefficient of determination.
- rho
Spearman's rho autocorrelation
Examples
# load libraries for models and data
library(orcutt)
# fit model and summarize results
reg <- lm(mpg ~ wt + qsec + disp, mtcars)
tidy(reg)
#> # A tibble: 4 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 19.8 5.94 3.33 0.00244
#> 2 wt -5.03 1.22 -4.11 0.000310
#> 3 qsec 0.927 0.342 2.71 0.0114
#> 4 disp -0.000128 0.0106 -0.0121 0.990
co <- cochrane.orcutt(reg)
tidy(co)
#> # A tibble: 4 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 21.8 6.63 3.29 0.00279
#> 2 wt -4.85 1.33 -3.65 0.00112
#> 3 qsec 0.797 0.370 2.15 0.0402
#> 4 disp -0.00136 0.0110 -0.123 0.903
glance(co)
#> # A tibble: 1 × 9
#> r.squared adj.r.squared rho number.interaction dw.original
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.799 0.777 0.268 7 1.50
#> # ℹ 4 more variables: p.value.original <dbl>, dw.transformed <dbl>,
#> # p.value.transformed <dbl>, nobs <int>