Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'orcutt'
tidy(x, ...)
Arguments
- x
An
orcutt
object returned fromorcutt::cochrane.orcutt()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
See also
Other orcutt tidiers:
glance.orcutt()
Value
A tibble::tibble()
with columns:
- estimate
The estimated value of the regression term.
- p.value
The two-sided p-value associated with the observed statistic.
- statistic
The value of a T-statistic to use in a hypothesis that the regression term is non-zero.
- std.error
The standard error of the regression term.
- term
The name of the regression term.
Examples
# load libraries for models and data
library(orcutt)
# fit model and summarize results
reg <- lm(mpg ~ wt + qsec + disp, mtcars)
tidy(reg)
#> # A tibble: 4 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 19.8 5.94 3.33 0.00244
#> 2 wt -5.03 1.22 -4.11 0.000310
#> 3 qsec 0.927 0.342 2.71 0.0114
#> 4 disp -0.000128 0.0106 -0.0121 0.990
co <- cochrane.orcutt(reg)
tidy(co)
#> # A tibble: 4 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 21.8 6.63 3.29 0.00279
#> 2 wt -4.85 1.33 -3.65 0.00112
#> 3 qsec 0.797 0.370 2.15 0.0402
#> 4 disp -0.00136 0.0110 -0.123 0.903
glance(co)
#> # A tibble: 1 × 9
#> r.squared adj.r.squared rho number.interaction dw.original
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.799 0.777 0.268 7 1.50
#> # ℹ 4 more variables: p.value.original <dbl>, dw.transformed <dbl>,
#> # p.value.transformed <dbl>, nobs <int>