Skip to content

Glance accepts a model object and returns a tibble::tibble() with exactly one row of model summaries. The summaries are typically goodness of fit measures, p-values for hypothesis tests on residuals, or model convergence information.

Glance never returns information from the original call to the modeling function. This includes the name of the modeling function or any arguments passed to the modeling function.

Glance does not calculate summary measures. Rather, it farms out these computations to appropriate methods and gathers the results together. Sometimes a goodness of fit measure will be undefined. In these cases the measure will be reported as NA.

Glance returns the same number of columns regardless of whether the model matrix is rank-deficient or not. If so, entries in columns that no longer have a well-defined value are filled in with an NA of the appropriate type.

Usage

# S3 method for class 'poLCA'
glance(x, ...)

Arguments

x

A poLCA object returned from poLCA::poLCA().

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Two exceptions here are:

  • tidy() methods will warn when supplied an exponentiate argument if it will be ignored.

  • augment() methods will warn when supplied a newdata argument if it will be ignored.

See also

glance(), poLCA::poLCA()

Other poLCA tidiers: augment.poLCA(), tidy.poLCA()

Value

A tibble::tibble() with exactly one row and columns:

AIC

Akaike's Information Criterion for the model.

BIC

Bayesian Information Criterion for the model.

chi.squared

The Pearson Chi-Square goodness of fit statistic for multiway tables.

df

Degrees of freedom used by the model.

df.residual

Residual degrees of freedom.

logLik

The log-likelihood of the model. [stats::logLik()] may be a useful reference.

nobs

Number of observations used.

g.squared

The likelihood ratio/deviance statistic

Examples


# load libraries for models and data
library(poLCA)
library(dplyr)

# generate data
data(values)

f <- cbind(A, B, C, D) ~ 1

# fit model
M1 <- poLCA(f, values, nclass = 2, verbose = FALSE)

M1
#> Conditional item response (column) probabilities,
#>  by outcome variable, for each class (row) 
#>  
#> $A
#>            Pr(1)  Pr(2)
#> class 1:  0.2864 0.7136
#> class 2:  0.0068 0.9932
#> 
#> $B
#>            Pr(1)  Pr(2)
#> class 1:  0.6704 0.3296
#> class 2:  0.0602 0.9398
#> 
#> $C
#>            Pr(1)  Pr(2)
#> class 1:  0.6460 0.3540
#> class 2:  0.0735 0.9265
#> 
#> $D
#>            Pr(1)  Pr(2)
#> class 1:  0.8676 0.1324
#> class 2:  0.2309 0.7691
#> 
#> Estimated class population shares 
#>  0.7208 0.2792 
#>  
#> Predicted class memberships (by modal posterior prob.) 
#>  0.6713 0.3287 
#>  
#> ========================================================= 
#> Fit for 2 latent classes: 
#> ========================================================= 
#> number of observations: 216 
#> number of estimated parameters: 9 
#> residual degrees of freedom: 6 
#> maximum log-likelihood: -504.4677 
#>  
#> AIC(2): 1026.935
#> BIC(2): 1057.313
#> G^2(2): 2.719922 (Likelihood ratio/deviance statistic) 
#> X^2(2): 2.719764 (Chi-square goodness of fit) 
#>  

# summarize model fit with tidiers + visualization
tidy(M1)
#> # A tibble: 16 × 5
#>    variable class outcome estimate std.error
#>    <chr>    <int>   <dbl>    <dbl>     <dbl>
#>  1 A            1       1  0.286      0.0393
#>  2 A            2       1  0.00681    0.0254
#>  3 A            1       2  0.714      0.0393
#>  4 A            2       2  0.993      0.0254
#>  5 B            1       1  0.670      0.0489
#>  6 B            2       1  0.0602     0.0649
#>  7 B            1       2  0.330      0.0489
#>  8 B            2       2  0.940      0.0649
#>  9 C            1       1  0.646      0.0482
#> 10 C            2       1  0.0735     0.0642
#> 11 C            1       2  0.354      0.0482
#> 12 C            2       2  0.927      0.0642
#> 13 D            1       1  0.868      0.0379
#> 14 D            2       1  0.231      0.0929
#> 15 D            1       2  0.132      0.0379
#> 16 D            2       2  0.769      0.0929
augment(M1)
#> # A tibble: 216 × 7
#>        A     B     C     D X.Intercept. .class .probability
#>    <dbl> <dbl> <dbl> <dbl>        <dbl>  <int>        <dbl>
#>  1     2     2     2     2            1      2        0.959
#>  2     2     2     2     2            1      2        0.959
#>  3     2     2     2     2            1      2        0.959
#>  4     2     2     2     2            1      2        0.959
#>  5     2     2     2     2            1      2        0.959
#>  6     2     2     2     2            1      2        0.959
#>  7     2     2     2     2            1      2        0.959
#>  8     2     2     2     2            1      2        0.959
#>  9     2     2     2     2            1      2        0.959
#> 10     2     2     2     2            1      2        0.959
#> # ℹ 206 more rows
glance(M1)
#> # A tibble: 1 × 8
#>   logLik   AIC   BIC g.squared chi.squared    df df.residual  nobs
#>    <dbl> <dbl> <dbl>     <dbl>       <dbl> <dbl>       <dbl> <int>
#> 1  -504. 1027. 1057.      2.72        2.72     9           6   216

library(ggplot2)

ggplot(tidy(M1), aes(factor(class), estimate, fill = factor(outcome))) +
  geom_bar(stat = "identity", width = 1) +
  facet_wrap(~variable)


# three-class model with a single covariate.
data(election)

f2a <- cbind(
  MORALG, CARESG, KNOWG, LEADG, DISHONG, INTELG,
  MORALB, CARESB, KNOWB, LEADB, DISHONB, INTELB
) ~ PARTY

nes2a <- poLCA(f2a, election, nclass = 3, nrep = 5, verbose = FALSE)

td <- tidy(nes2a)
td
#> # A tibble: 144 × 5
#>    variable class outcome           estimate std.error
#>    <chr>    <int> <fct>                <dbl>     <dbl>
#>  1 MORALG       1 1 Extremely well    0.108    0.0175 
#>  2 MORALG       2 1 Extremely well    0.137    0.0182 
#>  3 MORALG       3 1 Extremely well    0.622    0.0309 
#>  4 MORALG       1 2 Quite well        0.383    0.0274 
#>  5 MORALG       2 2 Quite well        0.668    0.0247 
#>  6 MORALG       3 2 Quite well        0.335    0.0293 
#>  7 MORALG       1 3 Not too well      0.304    0.0253 
#>  8 MORALG       2 3 Not too well      0.180    0.0208 
#>  9 MORALG       3 3 Not too well      0.0172   0.00841
#> 10 MORALG       1 4 Not well at all   0.205    0.0243 
#> # ℹ 134 more rows

ggplot(td, aes(outcome, estimate, color = factor(class), group = class)) +
  geom_line() +
  facet_wrap(~variable, nrow = 2) +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))


au <- augment(nes2a)

au
#> # A tibble: 1,300 × 16
#>    MORALG      CARESG KNOWG LEADG DISHONG INTELG MORALB CARESB KNOWB LEADB
#>    <fct>       <fct>  <fct> <fct> <fct>   <fct>  <fct>  <fct>  <fct> <fct>
#>  1 3 Not too … 1 Ext… 2 Qu… 2 Qu… 3 Not … 2 Qui… 1 Ext… 1 Ext… 2 Qu… 2 Qu…
#>  2 1 Extremel… 2 Qui… 2 Qu… 1 Ex… 3 Not … 2 Qui… 2 Qui… 2 Qui… 2 Qu… 3 No…
#>  3 2 Quite we… 2 Qui… 2 Qu… 2 Qu… 2 Quit… 2 Qui… 2 Qui… 3 Not… 2 Qu… 2 Qu…
#>  4 2 Quite we… 4 Not… 2 Qu… 3 No… 2 Quit… 2 Qui… 1 Ext… 1 Ext… 2 Qu… 2 Qu…
#>  5 2 Quite we… 2 Qui… 2 Qu… 2 Qu… 3 Not … 2 Qui… 3 Not… 4 Not… 4 No… 4 No…
#>  6 2 Quite we… 2 Qui… 2 Qu… 3 No… 4 Not … 2 Qui… 2 Qui… 3 Not… 2 Qu… 2 Qu…
#>  7 1 Extremel… 1 Ext… 1 Ex… 1 Ex… 4 Not … 1 Ext… 2 Qui… 4 Not… 2 Qu… 3 No…
#>  8 2 Quite we… 2 Qui… 2 Qu… 2 Qu… 3 Not … 2 Qui… 3 Not… 2 Qui… 2 Qu… 2 Qu…
#>  9 2 Quite we… 2 Qui… 2 Qu… 2 Qu… 3 Not … 2 Qui… 2 Qui… 2 Qui… 2 Qu… 3 No…
#> 10 2 Quite we… 3 Not… 2 Qu… 2 Qu… 3 Not … 2 Qui… 2 Qui… 4 Not… 2 Qu… 4 No…
#> # ℹ 1,290 more rows
#> # ℹ 6 more variables: DISHONB <fct>, INTELB <fct>, X.Intercept. <dbl>,
#> #   PARTY <dbl>, .class <int>, .probability <dbl>

count(au, .class)
#> # A tibble: 3 × 2
#>   .class     n
#>    <int> <int>
#> 1      1   444
#> 2      2   496
#> 3      3   360

# if the original data is provided, it leads to NAs in new columns
# for rows that weren't predicted
au2 <- augment(nes2a, data = election)

au2
#> # A tibble: 1,785 × 20
#>    MORALG      CARESG KNOWG LEADG DISHONG INTELG MORALB CARESB KNOWB LEADB
#>    <fct>       <fct>  <fct> <fct> <fct>   <fct>  <fct>  <fct>  <fct> <fct>
#>  1 3 Not too … 1 Ext… 2 Qu… 2 Qu… 3 Not … 2 Qui… 1 Ext… 1 Ext… 2 Qu… 2 Qu…
#>  2 4 Not well… 3 Not… 4 No… 3 No… 2 Quit… 2 Qui… NA     NA     2 Qu… 3 No…
#>  3 1 Extremel… 2 Qui… 2 Qu… 1 Ex… 3 Not … 2 Qui… 2 Qui… 2 Qui… 2 Qu… 3 No…
#>  4 2 Quite we… 2 Qui… 2 Qu… 2 Qu… 2 Quit… 2 Qui… 2 Qui… 3 Not… 2 Qu… 2 Qu…
#>  5 2 Quite we… 4 Not… 2 Qu… 3 No… 2 Quit… 2 Qui… 1 Ext… 1 Ext… 2 Qu… 2 Qu…
#>  6 2 Quite we… 3 Not… 3 No… 2 Qu… 2 Quit… 2 Qui… 2 Qui… NA     3 No… 2 Qu…
#>  7 2 Quite we… NA     2 Qu… 2 Qu… 4 Not … 2 Qui… NA     3 Not… 2 Qu… 2 Qu…
#>  8 2 Quite we… 2 Qui… 2 Qu… 2 Qu… 3 Not … 2 Qui… 3 Not… 4 Not… 4 No… 4 No…
#>  9 2 Quite we… 2 Qui… 2 Qu… 3 No… 4 Not … 2 Qui… 2 Qui… 3 Not… 2 Qu… 2 Qu…
#> 10 1 Extremel… 1 Ext… 1 Ex… 1 Ex… 4 Not … 1 Ext… 2 Qui… 4 Not… 2 Qu… 3 No…
#> # ℹ 1,775 more rows
#> # ℹ 10 more variables: DISHONB <fct>, INTELB <fct>, VOTE3 <dbl>,
#> #   AGE <dbl>, EDUC <dbl>, GENDER <dbl>, PARTY <dbl>, .class <int>,
#> #   .probability <dbl>, .rownames <chr>

dim(au2)
#> [1] 1785   20