Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'cld'
tidy(x, ...)
Arguments
- x
A
cld
object created by callingmultcomp::cld()
on aglht
,confint.glht()
orsummary.glht()
object.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
See also
tidy()
, multcomp::cld()
, multcomp::summary.glht()
,
multcomp::confint.glht()
, multcomp::glht()
Other multcomp tidiers:
tidy.confint.glht()
,
tidy.glht()
,
tidy.summary.glht()
Value
A tibble::tibble()
with columns:
- contrast
Levels being compared.
- letters
Compact letter display denoting all pair-wise comparisons.
Examples
# load libraries for models and data
library(multcomp)
#> Loading required package: mvtnorm
#>
#> Attaching package: ‘mvtnorm’
#> The following object is masked from ‘package:mclust’:
#>
#> dmvnorm
#> Loading required package: TH.data
#>
#> Attaching package: ‘TH.data’
#> The following object is masked from ‘package:MASS’:
#>
#> geyser
library(ggplot2)
amod <- aov(breaks ~ wool + tension, data = warpbreaks)
wht <- glht(amod, linfct = mcp(tension = "Tukey"))
tidy(wht)
#> # A tibble: 3 × 7
#> term contrast null.value estimate std.error statistic adj.p.value
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 tension M - L 0 -10 3.87 -2.58 0.0336
#> 2 tension H - L 0 -14.7 3.87 -3.80 0.00110
#> 3 tension H - M 0 -4.72 3.87 -1.22 0.447
ggplot(wht, aes(lhs, estimate)) +
geom_point()
CI <- confint(wht)
tidy(CI)
#> # A tibble: 3 × 5
#> term contrast estimate conf.low conf.high
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 tension M - L -10 -19.4 -0.644
#> 2 tension H - L -14.7 -24.1 -5.37
#> 3 tension H - M -4.72 -14.1 4.63
ggplot(CI, aes(lhs, estimate, ymin = lwr, ymax = upr)) +
geom_pointrange()
tidy(summary(wht))
#> # A tibble: 3 × 7
#> term contrast null.value estimate std.error statistic adj.p.value
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 tension M - L 0 -10 3.87 -2.58 0.0335
#> 2 tension H - L 0 -14.7 3.87 -3.80 0.00108
#> 3 tension H - M 0 -4.72 3.87 -1.22 0.447
ggplot(mapping = aes(lhs, estimate)) +
geom_linerange(aes(ymin = lwr, ymax = upr), data = CI) +
geom_point(aes(size = p), data = summary(wht)) +
scale_size(trans = "reverse")
cld <- cld(wht)
tidy(cld)
#> # A tibble: 3 × 2
#> tension letters
#> <chr> <chr>
#> 1 L a
#> 2 M b
#> 3 H b