Skip to content

Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

Usage

# S3 method for class 'nls'
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)

Arguments

x

An nls object returned from stats::nls().

conf.int

Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to FALSE.

conf.level

The confidence level to use for the confidence interval if conf.int = TRUE. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Two exceptions here are:

  • tidy() methods will warn when supplied an exponentiate argument if it will be ignored.

  • augment() methods will warn when supplied a newdata argument if it will be ignored.

See also

Value

A tibble::tibble() with columns:

conf.high

Upper bound on the confidence interval for the estimate.

conf.low

Lower bound on the confidence interval for the estimate.

estimate

The estimated value of the regression term.

p.value

The two-sided p-value associated with the observed statistic.

statistic

The value of a T-statistic to use in a hypothesis that the regression term is non-zero.

std.error

The standard error of the regression term.

term

The name of the regression term.

Examples


# fit model
n <- nls(mpg ~ k * e^wt, data = mtcars, start = list(k = 1, e = 2))

# summarize model fit with tidiers + visualization
tidy(n)
#> # A tibble: 2 × 5
#>   term  estimate std.error statistic  p.value
#>   <chr>    <dbl>     <dbl>     <dbl>    <dbl>
#> 1 k       49.7      3.79        13.1 5.96e-14
#> 2 e        0.746    0.0199      37.5 8.86e-27
augment(n)
#> # A tibble: 32 × 4
#>      mpg    wt .fitted .resid
#>    <dbl> <dbl>   <dbl>  <dbl>
#>  1  21    2.62    23.0 -2.01 
#>  2  21    2.88    21.4 -0.352
#>  3  22.8  2.32    25.1 -2.33 
#>  4  21.4  3.22    19.3  2.08 
#>  5  18.7  3.44    18.1  0.611
#>  6  18.1  3.46    18.0  0.117
#>  7  14.3  3.57    17.4 -3.11 
#>  8  24.4  3.19    19.5  4.93 
#>  9  22.8  3.15    19.7  3.10 
#> 10  19.2  3.44    18.1  1.11 
#> # ℹ 22 more rows
glance(n)
#> # A tibble: 1 × 9
#>   sigma isConv     finTol logLik   AIC   BIC deviance df.residual  nobs
#>   <dbl> <lgl>       <dbl>  <dbl> <dbl> <dbl>    <dbl>       <int> <int>
#> 1  2.67 TRUE   0.00000204  -75.8  158.  162.     214.          30    32

library(ggplot2)

ggplot(augment(n), aes(wt, mpg)) +
  geom_point() +
  geom_line(aes(y = .fitted))


newdata <- head(mtcars)
newdata$wt <- newdata$wt + 1

augment(n, newdata = newdata)
#> # A tibble: 6 × 13
#>   .rownames      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear
#>   <chr>        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4     21       6   160   110  3.9   3.62  16.5     0     1     4
#> 2 Mazda RX4 W…  21       6   160   110  3.9   3.88  17.0     0     1     4
#> 3 Datsun 710    22.8     4   108    93  3.85  3.32  18.6     1     1     4
#> 4 Hornet 4 Dr…  21.4     6   258   110  3.08  4.22  19.4     1     0     3
#> 5 Hornet Spor…  18.7     8   360   175  3.15  4.44  17.0     0     0     3
#> 6 Valiant       18.1     6   225   105  2.76  4.46  20.2     1     0     3
#> # ℹ 2 more variables: carb <dbl>, .fitted <dbl>