Skip to content

Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

Usage

# S3 method for class 'ref.grid'
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)

Arguments

x

A ref.grid object created by emmeans::ref_grid().

conf.int

Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to FALSE.

conf.level

The confidence level to use for the confidence interval if conf.int = TRUE. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.

...

Additional arguments passed to emmeans::summary.emmGrid() or lsmeans::summary.ref.grid(). Cautionary note: misspecified arguments may be silently ignored!

Details

Returns a data frame with one observation for each estimated marginal mean, and one column for each combination of factors. When the input is a contrast, each row will contain one estimated contrast.

There are a large number of arguments that can be passed on to emmeans::summary.emmGrid() or lsmeans::summary.ref.grid().

Value

A tibble::tibble() with columns:

conf.high

Upper bound on the confidence interval for the estimate.

conf.low

Lower bound on the confidence interval for the estimate.

df

Degrees of freedom used by this term in the model.

p.value

The two-sided p-value associated with the observed statistic.

std.error

The standard error of the regression term.

estimate

Expected marginal mean

statistic

T-ratio statistic

Examples


# load libraries for models and data
library(emmeans)

# linear model for sales of oranges per day
oranges_lm1 <- lm(sales1 ~ price1 + price2 + day + store, data = oranges)

# reference grid; see vignette("basics", package = "emmeans")
oranges_rg1 <- ref_grid(oranges_lm1)
td <- tidy(oranges_rg1)
td
#> # A tibble: 36 × 9
#>    price1 price2 day   store estimate std.error    df statistic   p.value
#>     <dbl>  <dbl> <chr> <chr>    <dbl>     <dbl> <dbl>     <dbl>     <dbl>
#>  1   51.2   48.6 1     1         2.92      2.72    23      1.07 0.294    
#>  2   51.2   48.6 2     1         3.85      2.70    23      1.42 0.168    
#>  3   51.2   48.6 3     1        11.0       2.53    23      4.35 0.000237 
#>  4   51.2   48.6 4     1         6.10      2.65    23      2.30 0.0309   
#>  5   51.2   48.6 5     1        12.8       2.44    23      5.23 0.0000261
#>  6   51.2   48.6 6     1         8.75      2.79    23      3.14 0.00459  
#>  7   51.2   48.6 1     2         4.96      2.38    23      2.09 0.0482   
#>  8   51.2   48.6 2     2         5.89      2.34    23      2.52 0.0190   
#>  9   51.2   48.6 3     2        13.1       2.42    23      5.41 0.0000172
#> 10   51.2   48.6 4     2         8.14      2.35    23      3.46 0.00212  
#> # ℹ 26 more rows

# marginal averages
marginal <- emmeans(oranges_rg1, "day")
tidy(marginal)
#> # A tibble: 6 × 6
#>   day   estimate std.error    df statistic      p.value
#>   <chr>    <dbl>     <dbl> <dbl>     <dbl>        <dbl>
#> 1 1         5.56      1.77    23      3.15 0.00451     
#> 2 2         6.49      1.73    23      3.76 0.00103     
#> 3 3        13.7       1.75    23      7.80 0.0000000658
#> 4 4         8.74      1.73    23      5.04 0.0000420   
#> 5 5        15.4       1.79    23      8.65 0.0000000110
#> 6 6        11.4       1.77    23      6.45 0.00000140  

# contrasts
tidy(contrast(marginal))
#> # A tibble: 6 × 8
#>   term  contrast null.value estimate std.error    df statistic adj.p.value
#>   <chr> <chr>         <dbl>    <dbl>     <dbl> <dbl>     <dbl>       <dbl>
#> 1 day   day1 ef…          0    -4.65      1.62    23    -2.87       0.0261
#> 2 day   day2 ef…          0    -3.72      1.58    23    -2.36       0.0547
#> 3 day   day3 ef…          0     3.45      1.60    23     2.15       0.0637
#> 4 day   day4 ef…          0    -1.47      1.59    23    -0.930      0.434 
#> 5 day   day5 ef…          0     5.22      1.64    23     3.18       0.0249
#> 6 day   day6 ef…          0     1.18      1.62    23     0.726      0.475 
tidy(contrast(marginal, method = "pairwise"))
#> # A tibble: 15 × 8
#>    term  contrast    null.value estimate std.error    df statistic
#>    <chr> <chr>            <dbl>    <dbl>     <dbl> <dbl>     <dbl>
#>  1 day   day1 - day2          0   -0.930      2.47    23    -0.377
#>  2 day   day1 - day3          0   -8.10       2.47    23    -3.29 
#>  3 day   day1 - day4          0   -3.18       2.51    23    -1.27 
#>  4 day   day1 - day5          0   -9.88       2.56    23    -3.86 
#>  5 day   day1 - day6          0   -5.83       2.52    23    -2.31 
#>  6 day   day2 - day3          0   -7.17       2.48    23    -2.89 
#>  7 day   day2 - day4          0   -2.25       2.44    23    -0.920
#>  8 day   day2 - day5          0   -8.95       2.52    23    -3.56 
#>  9 day   day2 - day6          0   -4.90       2.45    23    -2.00 
#> 10 day   day3 - day4          0    4.92       2.49    23     1.98 
#> 11 day   day3 - day5          0   -1.78       2.47    23    -0.719
#> 12 day   day3 - day6          0    2.27       2.54    23     0.894
#> 13 day   day4 - day5          0   -6.70       2.49    23    -2.69 
#> 14 day   day4 - day6          0   -2.65       2.45    23    -1.08 
#> 15 day   day5 - day6          0    4.05       2.56    23     1.58 
#> # ℹ 1 more variable: adj.p.value <dbl>

# plot confidence intervals
library(ggplot2)

ggplot(tidy(marginal, conf.int = TRUE), aes(day, estimate)) +
  geom_point() +
  geom_errorbar(aes(ymin = conf.low, ymax = conf.high))


# by multiple prices
by_price <- emmeans(oranges_lm1, "day",
  by = "price2",
  at = list(
    price1 = 50, price2 = c(40, 60, 80),
    day = c("2", "3", "4")
  )
)

by_price
#> price2 = 40:
#>  day emmean   SE df lower.CL upper.CL
#>  2     6.24 1.89 23     2.33     10.1
#>  3    13.41 2.12 23     9.02     17.8
#>  4     8.48 1.87 23     4.62     12.3
#> 
#> price2 = 60:
#>  day emmean   SE df lower.CL upper.CL
#>  2     9.21 2.11 23     4.85     13.6
#>  3    16.38 1.91 23    12.44     20.3
#>  4    11.46 2.18 23     6.96     16.0
#> 
#> price2 = 80:
#>  day emmean   SE df lower.CL upper.CL
#>  2    12.19 3.65 23     4.65     19.7
#>  3    19.36 3.27 23    12.59     26.1
#>  4    14.44 3.74 23     6.71     22.2
#> 
#> Results are averaged over the levels of: store 
#> Confidence level used: 0.95 

tidy(by_price)
#> # A tibble: 9 × 7
#>   day   price2 estimate std.error    df statistic      p.value
#>   <chr>  <dbl>    <dbl>     <dbl> <dbl>     <dbl>        <dbl>
#> 1 2         40     6.24      1.89    23      3.30 0.00310     
#> 2 3         40    13.4       2.12    23      6.33 0.00000187  
#> 3 4         40     8.48      1.87    23      4.55 0.000145    
#> 4 2         60     9.21      2.11    23      4.37 0.000225    
#> 5 3         60    16.4       1.91    23      8.60 0.0000000122
#> 6 4         60    11.5       2.18    23      5.26 0.0000244   
#> 7 2         80    12.2       3.65    23      3.34 0.00282     
#> 8 3         80    19.4       3.27    23      5.91 0.00000502  
#> 9 4         80    14.4       3.74    23      3.86 0.000788    

ggplot(tidy(by_price, conf.int = TRUE), aes(price2, estimate, color = day)) +
  geom_line() +
  geom_errorbar(aes(ymin = conf.low, ymax = conf.high))


# joint_tests
tidy(joint_tests(oranges_lm1))
#> # A tibble: 4 × 5
#>   term   num.df den.df statistic   p.value
#>   <chr>   <dbl>  <dbl>     <dbl>     <dbl>
#> 1 price1      1     23     30.3  0.0000134
#> 2 price2      1     23      2.23 0.149    
#> 3 day         5     23      4.88 0.00346  
#> 4 store       5     23      2.52 0.0583