Skip to content

Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

Usage

# S3 method for class 'summary_emm'
tidy(x, null.value = NULL, ...)

Arguments

x

A summary_emm object.

null.value

Value to which estimate is compared.

...

Additional arguments passed to emmeans::summary.emmGrid() or lsmeans::summary.ref.grid(). Cautionary note: misspecified arguments may be silently ignored!

Details

Returns a data frame with one observation for each estimated marginal mean, and one column for each combination of factors. When the input is a contrast, each row will contain one estimated contrast.

There are a large number of arguments that can be passed on to emmeans::summary.emmGrid() or lsmeans::summary.ref.grid().

Value

A tibble::tibble() with columns:

conf.high

Upper bound on the confidence interval for the estimate.

conf.low

Lower bound on the confidence interval for the estimate.

contrast

Levels being compared.

den.df

Degrees of freedom of the denominator.

df

Degrees of freedom used by this term in the model.

null.value

Value to which the estimate is compared.

num.df

Degrees of freedom.

p.value

The two-sided p-value associated with the observed statistic.

std.error

The standard error of the regression term.

level1

One level of the factor being contrasted

level2

The other level of the factor being contrasted

term

Model term in joint tests

estimate

Expected marginal mean

statistic

T-ratio statistic or F-ratio statistic

Examples


# load libraries for models and data
library(emmeans)

# linear model for sales of oranges per day
oranges_lm1 <- lm(sales1 ~ price1 + price2 + day + store, data = oranges)

# reference grid; see vignette("basics", package = "emmeans")
oranges_rg1 <- ref_grid(oranges_lm1)
td <- tidy(oranges_rg1)
td
#> # A tibble: 36 × 9
#>    price1 price2 day   store estimate std.error    df statistic   p.value
#>     <dbl>  <dbl> <chr> <chr>    <dbl>     <dbl> <dbl>     <dbl>     <dbl>
#>  1   51.2   48.6 1     1         2.92      2.72    23      1.07 0.294    
#>  2   51.2   48.6 2     1         3.85      2.70    23      1.42 0.168    
#>  3   51.2   48.6 3     1        11.0       2.53    23      4.35 0.000237 
#>  4   51.2   48.6 4     1         6.10      2.65    23      2.30 0.0309   
#>  5   51.2   48.6 5     1        12.8       2.44    23      5.23 0.0000261
#>  6   51.2   48.6 6     1         8.75      2.79    23      3.14 0.00459  
#>  7   51.2   48.6 1     2         4.96      2.38    23      2.09 0.0482   
#>  8   51.2   48.6 2     2         5.89      2.34    23      2.52 0.0190   
#>  9   51.2   48.6 3     2        13.1       2.42    23      5.41 0.0000172
#> 10   51.2   48.6 4     2         8.14      2.35    23      3.46 0.00212  
#> # ℹ 26 more rows

# marginal averages
marginal <- emmeans(oranges_rg1, "day")
tidy(marginal)
#> # A tibble: 6 × 6
#>   day   estimate std.error    df statistic      p.value
#>   <chr>    <dbl>     <dbl> <dbl>     <dbl>        <dbl>
#> 1 1         5.56      1.77    23      3.15 0.00451     
#> 2 2         6.49      1.73    23      3.76 0.00103     
#> 3 3        13.7       1.75    23      7.80 0.0000000658
#> 4 4         8.74      1.73    23      5.04 0.0000420   
#> 5 5        15.4       1.79    23      8.65 0.0000000110
#> 6 6        11.4       1.77    23      6.45 0.00000140  

# contrasts
tidy(contrast(marginal))
#> # A tibble: 6 × 8
#>   term  contrast null.value estimate std.error    df statistic adj.p.value
#>   <chr> <chr>         <dbl>    <dbl>     <dbl> <dbl>     <dbl>       <dbl>
#> 1 day   day1 ef…          0    -4.65      1.62    23    -2.87       0.0261
#> 2 day   day2 ef…          0    -3.72      1.58    23    -2.36       0.0547
#> 3 day   day3 ef…          0     3.45      1.60    23     2.15       0.0637
#> 4 day   day4 ef…          0    -1.47      1.59    23    -0.930      0.434 
#> 5 day   day5 ef…          0     5.22      1.64    23     3.18       0.0249
#> 6 day   day6 ef…          0     1.18      1.62    23     0.726      0.475 
tidy(contrast(marginal, method = "pairwise"))
#> # A tibble: 15 × 8
#>    term  contrast    null.value estimate std.error    df statistic
#>    <chr> <chr>            <dbl>    <dbl>     <dbl> <dbl>     <dbl>
#>  1 day   day1 - day2          0   -0.930      2.47    23    -0.377
#>  2 day   day1 - day3          0   -8.10       2.47    23    -3.29 
#>  3 day   day1 - day4          0   -3.18       2.51    23    -1.27 
#>  4 day   day1 - day5          0   -9.88       2.56    23    -3.86 
#>  5 day   day1 - day6          0   -5.83       2.52    23    -2.31 
#>  6 day   day2 - day3          0   -7.17       2.48    23    -2.89 
#>  7 day   day2 - day4          0   -2.25       2.44    23    -0.920
#>  8 day   day2 - day5          0   -8.95       2.52    23    -3.56 
#>  9 day   day2 - day6          0   -4.90       2.45    23    -2.00 
#> 10 day   day3 - day4          0    4.92       2.49    23     1.98 
#> 11 day   day3 - day5          0   -1.78       2.47    23    -0.719
#> 12 day   day3 - day6          0    2.27       2.54    23     0.894
#> 13 day   day4 - day5          0   -6.70       2.49    23    -2.69 
#> 14 day   day4 - day6          0   -2.65       2.45    23    -1.08 
#> 15 day   day5 - day6          0    4.05       2.56    23     1.58 
#> # ℹ 1 more variable: adj.p.value <dbl>

# plot confidence intervals
library(ggplot2)

ggplot(tidy(marginal, conf.int = TRUE), aes(day, estimate)) +
  geom_point() +
  geom_errorbar(aes(ymin = conf.low, ymax = conf.high))


# by multiple prices
by_price <- emmeans(oranges_lm1, "day",
  by = "price2",
  at = list(
    price1 = 50, price2 = c(40, 60, 80),
    day = c("2", "3", "4")
  )
)

by_price
#> price2 = 40:
#>  day emmean   SE df lower.CL upper.CL
#>  2     6.24 1.89 23     2.33     10.1
#>  3    13.41 2.12 23     9.02     17.8
#>  4     8.48 1.87 23     4.62     12.3
#> 
#> price2 = 60:
#>  day emmean   SE df lower.CL upper.CL
#>  2     9.21 2.11 23     4.85     13.6
#>  3    16.38 1.91 23    12.44     20.3
#>  4    11.46 2.18 23     6.96     16.0
#> 
#> price2 = 80:
#>  day emmean   SE df lower.CL upper.CL
#>  2    12.19 3.65 23     4.65     19.7
#>  3    19.36 3.27 23    12.59     26.1
#>  4    14.44 3.74 23     6.71     22.2
#> 
#> Results are averaged over the levels of: store 
#> Confidence level used: 0.95 

tidy(by_price)
#> # A tibble: 9 × 7
#>   day   price2 estimate std.error    df statistic      p.value
#>   <chr>  <dbl>    <dbl>     <dbl> <dbl>     <dbl>        <dbl>
#> 1 2         40     6.24      1.89    23      3.30 0.00310     
#> 2 3         40    13.4       2.12    23      6.33 0.00000187  
#> 3 4         40     8.48      1.87    23      4.55 0.000145    
#> 4 2         60     9.21      2.11    23      4.37 0.000225    
#> 5 3         60    16.4       1.91    23      8.60 0.0000000122
#> 6 4         60    11.5       2.18    23      5.26 0.0000244   
#> 7 2         80    12.2       3.65    23      3.34 0.00282     
#> 8 3         80    19.4       3.27    23      5.91 0.00000502  
#> 9 4         80    14.4       3.74    23      3.86 0.000788    

ggplot(tidy(by_price, conf.int = TRUE), aes(price2, estimate, color = day)) +
  geom_line() +
  geom_errorbar(aes(ymin = conf.low, ymax = conf.high))


# joint_tests
tidy(joint_tests(oranges_lm1))
#> # A tibble: 4 × 5
#>   term   num.df den.df statistic   p.value
#>   <chr>   <dbl>  <dbl>     <dbl>     <dbl>
#> 1 price1      1     23     30.3  0.0000134
#> 2 price2      1     23      2.23 0.149    
#> 3 day         5     23      4.88 0.00346  
#> 4 store       5     23      2.52 0.0583