Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'glmRob'
tidy(x, ...)
Arguments
- x
A
glmRob
object returned fromrobust::glmRob()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
Details
For tidiers for robust models from the MASS package see
tidy.rlm()
.
See also
Other robust tidiers:
augment.lmRob()
,
glance.glmRob()
,
glance.lmRob()
,
tidy.lmRob()
Examples
# load libraries for models and data
library(robust)
# fit model
gm <- glmRob(am ~ wt, data = mtcars, family = "binomial")
# summarize model fit with tidiers
tidy(gm)
#> # A tibble: 2 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 12.0 4.51 2.67 0.00759
#> 2 wt -4.02 1.44 -2.80 0.00509
glance(gm)
#> # A tibble: 1 × 5
#> deviance sigma null.deviance df.residual nobs
#> <dbl> <dbl> <dbl> <int> <int>
#> 1 19.2 0.800 44.4 30 32