Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'lmRob'
tidy(x, ...)
Arguments
- x
A
lmRob
object returned fromrobust::lmRob()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
Details
For tidiers for robust models from the MASS package see
tidy.rlm()
.
See also
Other robust tidiers:
augment.lmRob()
,
glance.glmRob()
,
glance.lmRob()
,
tidy.glmRob()
Examples
# load modeling library
library(robust)
# fit model
m <- lmRob(mpg ~ wt, data = mtcars)
# summarize model fit with tidiers
tidy(m)
#> # A tibble: 2 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 35.6 3.58 9.93 5.37e-11
#> 2 wt -4.91 1.09 -4.49 9.67e- 5
augment(m)
#> # A tibble: 32 × 4
#> .rownames mpg wt .fitted
#> <chr> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 2.62 22.7
#> 2 Mazda RX4 Wag 21 2.88 21.4
#> 3 Datsun 710 22.8 2.32 24.2
#> 4 Hornet 4 Drive 21.4 3.22 19.8
#> 5 Hornet Sportabout 18.7 3.44 18.7
#> 6 Valiant 18.1 3.46 18.6
#> 7 Duster 360 14.3 3.57 18.0
#> 8 Merc 240D 24.4 3.19 19.9
#> 9 Merc 230 22.8 3.15 20.1
#> 10 Merc 280 19.2 3.44 18.7
#> # ℹ 22 more rows
glance(m)
#> # A tibble: 1 × 5
#> r.squared deviance sigma df.residual nobs
#> <dbl> <dbl> <dbl> <int> <int>
#> 1 0.567 136. 2.95 30 32