Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'summary.lm'
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)Arguments
- x
- A - summary.lmobject created by- stats::summary.lm().
- conf.int
- Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to - FALSE.
- conf.level
- The confidence level to use for the confidence interval if - conf.int = TRUE. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.
- ...
- Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in - ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass- conf.lvel = 0.9, all computation will proceed using- conf.level = 0.95. Two exceptions here are:
Details
The tidy.summary.lm() method is a potentially useful alternative
to tidy.lm(). For instance, if users have already converted large lm
objects into their leaner summary.lm equivalents to conserve memory.
See also
Other lm tidiers:
augment.glm(),
augment.lm(),
glance.glm(),
glance.lm(),
glance.summary.lm(),
glance.svyglm(),
tidy.glm(),
tidy.lm(),
tidy.lm.beta(),
tidy.mlm()
Value
A tibble::tibble() with columns:
- conf.high
- Upper bound on the confidence interval for the estimate. 
- conf.low
- Lower bound on the confidence interval for the estimate. 
- estimate
- The estimated value of the regression term. 
- p.value
- The two-sided p-value associated with the observed statistic. 
- statistic
- The value of a T-statistic to use in a hypothesis that the regression term is non-zero. 
- std.error
- The standard error of the regression term. 
- term
- The name of the regression term. 
Examples
# fit model
mod <- lm(mpg ~ wt + qsec, data = mtcars)
modsumm <- summary(mod)
# summarize model fit with tidiers
tidy(mod, conf.int = TRUE)
#> # A tibble: 3 × 7
#>   term        estimate std.error statistic  p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 (Intercept)   19.7       5.25       3.76 7.65e- 4    9.00      30.5 
#> 2 wt            -5.05      0.484    -10.4  2.52e-11   -6.04      -4.06
#> 3 qsec           0.929     0.265      3.51 1.50e- 3    0.387      1.47
# equivalent to the above
tidy(modsumm, conf.int = TRUE)
#> # A tibble: 3 × 7
#>   term        estimate std.error statistic  p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 (Intercept)   19.7       5.25       3.76 7.65e- 4    9.00      30.5 
#> 2 wt            -5.05      0.484    -10.4  2.52e-11   -6.04      -4.06
#> 3 qsec           0.929     0.265      3.51 1.50e- 3    0.387      1.47
glance(mod)
#> # A tibble: 1 × 12
#>   r.squared adj.r.squared sigma statistic  p.value    df logLik   AIC
#>       <dbl>         <dbl> <dbl>     <dbl>    <dbl> <dbl>  <dbl> <dbl>
#> 1     0.826         0.814  2.60      69.0 9.39e-12     2  -74.4  157.
#> # ℹ 4 more variables: BIC <dbl>, deviance <dbl>, df.residual <int>,
#> #   nobs <int>
# mostly the same, except for a few missing columns
glance(modsumm)
#> # A tibble: 1 × 8
#>   r.squared adj.r.squared sigma statistic  p.value    df df.residual
#>       <dbl>         <dbl> <dbl>     <dbl>    <dbl> <dbl>       <int>
#> 1     0.826         0.814  2.60      69.0 9.39e-12     2          29
#> # ℹ 1 more variable: nobs <dbl>
