Augment accepts a model object and a dataset and adds
information about each observation in the dataset. Most commonly, this
includes predicted values in the .fitted
column, residuals in the
.resid
column, and standard errors for the fitted values in a .se.fit
column. New columns always begin with a .
prefix to avoid overwriting
columns in the original dataset.
Users may pass data to augment via either the data
argument or the
newdata
argument. If the user passes data to the data
argument,
it must be exactly the data that was used to fit the model
object. Pass datasets to newdata
to augment data that was not used
during model fitting. This still requires that at least all predictor
variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata
, then no
.resid
column will be included in the output.
Augment will often behave differently depending on whether data
or
newdata
is given. This is because there is often information
associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.
For convenience, many augment methods provide default data
arguments,
so that augment(fit)
will return the augmented training data. In these
cases, augment tries to reconstruct the original data based on the model
object with varying degrees of success.
The augmented dataset is always returned as a tibble::tibble with the
same number of rows as the passed dataset. This means that the passed
data must be coercible to a tibble. If a predictor enters the model as part
of a matrix of covariates, such as when the model formula uses
splines::ns()
, stats::poly()
, or survival::Surv()
, it is represented
as a matrix column.
We are in the process of defining behaviors for models fit with various
na.action
arguments, but make no guarantees about behavior when data is
missing at this time.
Usage
# S3 method for class 'clm'
augment(
x,
data = model.frame(x),
newdata = NULL,
type.predict = c("prob", "class"),
...
)
Arguments
- x
A
clm
object returned fromordinal::clm()
.- data
A base::data.frame or
tibble::tibble()
containing the original data that was used to produce the objectx
. Defaults tostats::model.frame(x)
so thataugment(my_fit)
returns the augmented original data. Do not pass new data to thedata
argument. Augment will report information such as influence and cooks distance for data passed to thedata
argument. These measures are only defined for the original training data.- newdata
A
base::data.frame()
ortibble::tibble()
containing all the original predictors used to createx
. Defaults toNULL
, indicating that nothing has been passed tonewdata
. Ifnewdata
is specified, thedata
argument will be ignored.- type.predict
Which type of prediction to compute, either
"prob"
or"class"
, passed toordinal::predict.clm()
. Defaults to"prob"
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
See also
tidy, ordinal::clm()
, ordinal::predict.clm()
Other ordinal tidiers:
augment.polr()
,
glance.clm()
,
glance.clmm()
,
glance.polr()
,
glance.svyolr()
,
tidy.clm()
,
tidy.clmm()
,
tidy.polr()
,
tidy.svyolr()
Examples
# load libraries for models and data
library(ordinal)
#>
#> Attaching package: ‘ordinal’
#> The following object is masked from ‘package:dplyr’:
#>
#> slice
# fit model
fit <- clm(rating ~ temp * contact, data = wine)
# summarize model fit with tidiers
tidy(fit)
#> # A tibble: 7 × 6
#> term estimate std.error statistic p.value coef.type
#> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 1|2 -1.41 0.545 -2.59 9.66e- 3 intercept
#> 2 2|3 1.14 0.510 2.24 2.48e- 2 intercept
#> 3 3|4 3.38 0.638 5.29 1.21e- 7 intercept
#> 4 4|5 4.94 0.751 6.58 4.66e-11 intercept
#> 5 tempwarm 2.32 0.701 3.31 9.28e- 4 location
#> 6 contactyes 1.35 0.660 2.04 4.13e- 2 location
#> 7 tempwarm:contactyes 0.360 0.924 0.389 6.97e- 1 location
tidy(fit, conf.int = TRUE, conf.level = 0.9)
#> # A tibble: 7 × 8
#> term estimate std.error statistic p.value conf.low conf.high coef.type
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 1|2 -1.41 0.545 -2.59 9.66e- 3 NA NA intercept
#> 2 2|3 1.14 0.510 2.24 2.48e- 2 NA NA intercept
#> 3 3|4 3.38 0.638 5.29 1.21e- 7 NA NA intercept
#> 4 4|5 4.94 0.751 6.58 4.66e-11 NA NA intercept
#> 5 temp… 2.32 0.701 3.31 9.28e- 4 1.20 3.52 location
#> 6 cont… 1.35 0.660 2.04 4.13e- 2 0.284 2.47 location
#> 7 temp… 0.360 0.924 0.389 6.97e- 1 -1.17 1.89 location
tidy(fit, conf.int = TRUE, conf.type = "Wald", exponentiate = TRUE)
#> # A tibble: 7 × 8
#> term estimate std.error statistic p.value conf.low conf.high coef.type
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 1|2 0.244 0.545 -2.59 9.66e- 3 0.0837 0.710 intercept
#> 2 2|3 3.14 0.510 2.24 2.48e- 2 1.16 8.52 intercept
#> 3 3|4 29.3 0.638 5.29 1.21e- 7 8.38 102. intercept
#> 4 4|5 140. 0.751 6.58 4.66e-11 32.1 610. intercept
#> 5 temp… 10.2 0.701 3.31 9.28e- 4 2.58 40.2 location
#> 6 cont… 3.85 0.660 2.04 4.13e- 2 1.05 14.0 location
#> 7 temp… 1.43 0.924 0.389 6.97e- 1 0.234 8.76 location
glance(fit)
#> # A tibble: 1 × 6
#> edf AIC BIC logLik df.residual nobs
#> <int> <dbl> <dbl> <logLik> <dbl> <dbl>
#> 1 7 187. 203. -86.4162 65 72
augment(fit, type.predict = "prob")
#> # A tibble: 72 × 4
#> rating temp contact .fitted
#> <ord> <fct> <fct> <dbl>
#> 1 2 cold no 0.562
#> 2 3 cold no 0.209
#> 3 3 cold yes 0.435
#> 4 4 cold yes 0.0894
#> 5 4 warm no 0.190
#> 6 4 warm no 0.190
#> 7 5 warm yes 0.286
#> 8 5 warm yes 0.286
#> 9 1 cold no 0.196
#> 10 2 cold no 0.562
#> # ℹ 62 more rows
augment(fit, type.predict = "class")
#> # A tibble: 72 × 4
#> rating temp contact .fitted
#> <ord> <fct> <fct> <fct>
#> 1 2 cold no 2
#> 2 3 cold no 2
#> 3 3 cold yes 3
#> 4 4 cold yes 3
#> 5 4 warm no 3
#> 6 4 warm no 3
#> 7 5 warm yes 4
#> 8 5 warm yes 4
#> 9 1 cold no 2
#> 10 2 cold no 2
#> # ℹ 62 more rows
# ...and again with another model specification
fit2 <- clm(rating ~ temp, nominal = ~contact, data = wine)
tidy(fit2)
#> # A tibble: 9 × 6
#> term estimate std.error statistic p.value coef.type
#> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 1|2.(Intercept) -1.32 0.562 -2.35 0.0186 intercept
#> 2 2|3.(Intercept) 1.25 0.475 2.63 0.00866 intercept
#> 3 3|4.(Intercept) 3.55 0.656 5.41 0.0000000625 intercept
#> 4 4|5.(Intercept) 4.66 0.860 5.42 0.0000000608 intercept
#> 5 1|2.contactyes -1.62 1.16 -1.39 0.164 intercept
#> 6 2|3.contactyes -1.51 0.591 -2.56 0.0105 intercept
#> 7 3|4.contactyes -1.67 0.649 -2.58 0.00985 intercept
#> 8 4|5.contactyes -1.05 0.897 -1.17 0.241 intercept
#> 9 tempwarm 2.52 0.535 4.71 0.00000250 location
glance(fit2)
#> # A tibble: 1 × 6
#> edf AIC BIC logLik df.residual nobs
#> <int> <dbl> <dbl> <logLik> <dbl> <dbl>
#> 1 9 190. 211. -86.20855 63 72