Glance accepts a model object and returns a tibble::tibble()
with exactly one row of model summaries. The summaries are typically
goodness of fit measures, p-values for hypothesis tests on residuals,
or model convergence information.
Glance never returns information from the original call to the modeling function. This includes the name of the modeling function or any arguments passed to the modeling function.
Glance does not calculate summary measures. Rather, it farms out these
computations to appropriate methods and gathers the results together.
Sometimes a goodness of fit measure will be undefined. In these cases
the measure will be reported as NA
.
Glance returns the same number of columns regardless of whether the
model matrix is rank-deficient or not. If so, entries in columns
that no longer have a well-defined value are filled in with an NA
of the appropriate type.
Usage
# S3 method for class 'polr'
glance(x, ...)
Arguments
- x
A
polr
object returned fromMASS::polr()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
See also
Other ordinal tidiers:
augment.clm()
,
augment.polr()
,
glance.clm()
,
glance.clmm()
,
glance.svyolr()
,
tidy.clm()
,
tidy.clmm()
,
tidy.polr()
,
tidy.svyolr()
Value
A tibble::tibble()
with exactly one row and columns:
- AIC
Akaike's Information Criterion for the model.
- BIC
Bayesian Information Criterion for the model.
- deviance
Deviance of the model.
- df.residual
Residual degrees of freedom.
- edf
The effective degrees of freedom.
- logLik
The log-likelihood of the model. [stats::logLik()] may be a useful reference.
- nobs
Number of observations used.
Examples
# load libraries for models and data
library(MASS)
# fit model
fit <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
# summarize model fit with tidiers
tidy(fit, exponentiate = TRUE, conf.int = TRUE)
#>
#> Re-fitting to get Hessian
#> # A tibble: 8 × 7
#> term estimate std.error statistic conf.low conf.high coef.type
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 InflMedium 1.76 0.105 5.41 1.44 2.16 coefficie…
#> 2 InflHigh 3.63 0.127 10.1 2.83 4.66 coefficie…
#> 3 TypeApartment 0.564 0.119 -4.80 0.446 0.712 coefficie…
#> 4 TypeAtrium 0.693 0.155 -2.36 0.511 0.940 coefficie…
#> 5 TypeTerrace 0.336 0.151 -7.20 0.249 0.451 coefficie…
#> 6 ContHigh 1.43 0.0955 3.77 1.19 1.73 coefficie…
#> 7 Low|Medium 0.609 0.125 -3.97 NA NA scale
#> 8 Medium|High 2.00 0.125 5.50 NA NA scale
glance(fit)
#> # A tibble: 1 × 7
#> edf logLik AIC BIC deviance df.residual nobs
#> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
#> 1 8 -1740. 3495. 3539. 3479. 1673 1681
augment(fit, type.predict = "class")
#> # A tibble: 72 × 6
#> Sat Infl Type Cont `(weights)` .fitted
#> <ord> <fct> <fct> <fct> <int> <fct>
#> 1 Low Low Tower Low 21 Low
#> 2 Medium Low Tower Low 21 Low
#> 3 High Low Tower Low 28 Low
#> 4 Low Medium Tower Low 34 High
#> 5 Medium Medium Tower Low 22 High
#> 6 High Medium Tower Low 36 High
#> 7 Low High Tower Low 10 High
#> 8 Medium High Tower Low 11 High
#> 9 High High Tower Low 36 High
#> 10 Low Low Apartment Low 61 Low
#> # ℹ 62 more rows
fit2 <- polr(factor(gear) ~ am + mpg + qsec, data = mtcars)
tidy(fit, p.values = TRUE)
#>
#> Re-fitting to get Hessian
#> p-values can presently only be returned for models that contain
#> no categorical variables with more than two levels
#> # A tibble: 8 × 6
#> term estimate std.error statistic p.value coef.type
#> <chr> <dbl> <dbl> <dbl> <lgl> <chr>
#> 1 InflMedium 0.566 0.105 5.41 NA coefficient
#> 2 InflHigh 1.29 0.127 10.1 NA coefficient
#> 3 TypeApartment -0.572 0.119 -4.80 NA coefficient
#> 4 TypeAtrium -0.366 0.155 -2.36 NA coefficient
#> 5 TypeTerrace -1.09 0.151 -7.20 NA coefficient
#> 6 ContHigh 0.360 0.0955 3.77 NA coefficient
#> 7 Low|Medium -0.496 0.125 -3.97 NA scale
#> 8 Medium|High 0.691 0.125 5.50 NA scale