Skip to content

Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

Usage

# S3 method for class 'svyolr'
tidy(x, conf.int = FALSE, conf.level = 0.95, exponentiate = FALSE, ...)

Arguments

x

A svyolr object returned from survey::svyolr().

conf.int

Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to FALSE.

conf.level

The confidence level to use for the confidence interval if conf.int = TRUE. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.

exponentiate

Logical indicating whether or not to exponentiate the the coefficient estimates. This is typical for logistic and multinomial regressions, but a bad idea if there is no log or logit link. Defaults to FALSE.

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Two exceptions here are:

  • tidy() methods will warn when supplied an exponentiate argument if it will be ignored.

  • augment() methods will warn when supplied a newdata argument if it will be ignored.

Details

The tidy.svyolr() tidier is a light wrapper around tidy.polr(). However, the implementation for p-value calculation in tidy.polr() is both computationally intensive and specific to that model, so the p.values argument to tidy.svyolr() is currently ignored, and will raise a warning when passed.

Value

A tibble::tibble() with columns:

conf.high

Upper bound on the confidence interval for the estimate.

conf.low

Lower bound on the confidence interval for the estimate.

estimate

The estimated value of the regression term.

p.value

The two-sided p-value associated with the observed statistic.

statistic

The value of a T-statistic to use in a hypothesis that the regression term is non-zero.

std.error

The standard error of the regression term.

term

The name of the regression term.

Examples

library(broom)
library(survey)

data(api)
dclus1 <- svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)
dclus1 <- update(dclus1, mealcat = cut(meals, c(0, 25, 50, 75, 100)))

m <- svyolr(mealcat ~ avg.ed + mobility + stype, design = dclus1)

m
#> Call:
#> svyolr(mealcat ~ avg.ed + mobility + stype, design = dclus1)
#> 
#> Coefficients:
#>     avg.ed   mobility     stypeH     stypeM 
#> -2.6999217  0.0325042 -1.7574715 -0.6191463 
#> 
#> Intercepts:
#>   (0,25]|(25,50]  (25,50]|(50,75] (50,75]|(75,100] 
#>        -8.857919        -6.586464        -4.924938 

tidy(m, conf.int = TRUE)
#> # A tibble: 7 × 7
#>   term           estimate std.error statistic conf.low conf.high coef.type
#>   <chr>             <dbl>     <dbl>     <dbl>    <dbl>     <dbl> <chr>    
#> 1 avg.ed          -2.70      1.13       -2.38 -4.92e+0   -0.477  coeffici…
#> 2 mobility         0.0325    0.0207      1.57 -7.98e-3    0.0730 coeffici…
#> 3 stypeH          -1.76      0.700      -2.51 -3.13e+0   -0.386  coeffici…
#> 4 stypeM          -0.619     0.310      -2.00 -1.23e+0   -0.0123 coeffici…
#> 5 (0,25]|(25,50]  -8.86      3.69       -2.40 -1.61e+1   -1.63   scale    
#> 6 (25,50]|(50,7…  -6.59      3.11       -2.12 -1.27e+1   -0.493  scale    
#> 7 (50,75]|(75,1…  -4.92      2.86       -1.72 -1.05e+1    0.687  scale