Glance accepts a model object and returns a tibble::tibble()
with exactly one row of model summaries. The summaries are typically
goodness of fit measures, p-values for hypothesis tests on residuals,
or model convergence information.
Glance never returns information from the original call to the modeling function. This includes the name of the modeling function or any arguments passed to the modeling function.
Glance does not calculate summary measures. Rather, it farms out these
computations to appropriate methods and gathers the results together.
Sometimes a goodness of fit measure will be undefined. In these cases
the measure will be reported as NA
.
Glance returns the same number of columns regardless of whether the
model matrix is rank-deficient or not. If so, entries in columns
that no longer have a well-defined value are filled in with an NA
of the appropriate type.
Usage
# S3 method for class 'svyolr'
glance(x, ...)
Arguments
- x
A
svyolr
object returned fromsurvey::svyolr()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
See also
Other ordinal tidiers:
augment.clm()
,
augment.polr()
,
glance.clm()
,
glance.clmm()
,
glance.polr()
,
tidy.clm()
,
tidy.clmm()
,
tidy.polr()
,
tidy.svyolr()
Value
A tibble::tibble()
with exactly one row and columns:
- df.residual
Residual degrees of freedom.
- edf
The effective degrees of freedom.
- nobs
Number of observations used.
Examples
library(broom)
library(survey)
data(api)
dclus1 <- svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)
dclus1 <- update(dclus1, mealcat = cut(meals, c(0, 25, 50, 75, 100)))
m <- svyolr(mealcat ~ avg.ed + mobility + stype, design = dclus1)
m
#> Call:
#> svyolr(mealcat ~ avg.ed + mobility + stype, design = dclus1)
#>
#> Coefficients:
#> avg.ed mobility stypeH stypeM
#> -2.6999217 0.0325042 -1.7574715 -0.6191463
#>
#> Intercepts:
#> (0,25]|(25,50] (25,50]|(50,75] (50,75]|(75,100]
#> -8.857919 -6.586464 -4.924938
tidy(m, conf.int = TRUE)
#> # A tibble: 7 × 7
#> term estimate std.error statistic conf.low conf.high coef.type
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 avg.ed -2.70 1.13 -2.38 -4.92e+0 -0.477 coeffici…
#> 2 mobility 0.0325 0.0207 1.57 -7.98e-3 0.0730 coeffici…
#> 3 stypeH -1.76 0.700 -2.51 -3.13e+0 -0.386 coeffici…
#> 4 stypeM -0.619 0.310 -2.00 -1.23e+0 -0.0123 coeffici…
#> 5 (0,25]|(25,50] -8.86 3.69 -2.40 -1.61e+1 -1.63 scale
#> 6 (25,50]|(50,7… -6.59 3.11 -2.12 -1.27e+1 -0.493 scale
#> 7 (50,75]|(75,1… -4.92 2.86 -1.72 -1.05e+1 0.687 scale