Augment data with information from a(n) htest object
Source:R/stats-htest-tidiers.R
augment.htest.Rd
Augment accepts a model object and a dataset and adds
information about each observation in the dataset. Most commonly, this
includes predicted values in the .fitted
column, residuals in the
.resid
column, and standard errors for the fitted values in a .se.fit
column. New columns always begin with a .
prefix to avoid overwriting
columns in the original dataset.
Users may pass data to augment via either the data
argument or the
newdata
argument. If the user passes data to the data
argument,
it must be exactly the data that was used to fit the model
object. Pass datasets to newdata
to augment data that was not used
during model fitting. This still requires that at least all predictor
variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata
, then no
.resid
column will be included in the output.
Augment will often behave differently depending on whether data
or
newdata
is given. This is because there is often information
associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.
For convenience, many augment methods provide default data
arguments,
so that augment(fit)
will return the augmented training data. In these
cases, augment tries to reconstruct the original data based on the model
object with varying degrees of success.
The augmented dataset is always returned as a tibble::tibble with the
same number of rows as the passed dataset. This means that the passed
data must be coercible to a tibble. If a predictor enters the model as part
of a matrix of covariates, such as when the model formula uses
splines::ns()
, stats::poly()
, or survival::Surv()
, it is represented
as a matrix column.
We are in the process of defining behaviors for models fit with various
na.action
arguments, but make no guarantees about behavior when data is
missing at this time.
Usage
# S3 method for class 'htest'
augment(x, ...)
Arguments
- x
An
htest
objected, such as those created bystats::cor.test()
,stats::t.test()
,stats::wilcox.test()
,stats::chisq.test()
, etc.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
Details
See stats::chisq.test()
for more details on
how residuals are computed.
See also
augment()
, stats::chisq.test()
Other htest tidiers:
tidy.htest()
,
tidy.pairwise.htest()
,
tidy.power.htest()
Value
A tibble::tibble()
with exactly one row and columns:
- .observed
Observed count.
- .prop
Proportion of the total.
- .row.prop
Row proportion (2 dimensions table only).
- .col.prop
Column proportion (2 dimensions table only).
- .expected
Expected count under the null hypothesis.
- .resid
Pearson residuals.
- .std.resid
Standardized residual.
Examples
tt <- t.test(rnorm(10))
tidy(tt)
#> # A tibble: 1 × 8
#> estimate statistic p.value parameter conf.low conf.high method
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 -0.177 -0.539 0.603 9 -0.918 0.565 One Sample t-te…
#> # ℹ 1 more variable: alternative <chr>
# the glance output will be the same for each of the below tests
glance(tt)
#> # A tibble: 1 × 8
#> estimate statistic p.value parameter conf.low conf.high method
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 -0.177 -0.539 0.603 9 -0.918 0.565 One Sample t-te…
#> # ℹ 1 more variable: alternative <chr>
tt <- t.test(mpg ~ am, data = mtcars)
tidy(tt)
#> # A tibble: 1 × 10
#> estimate estimate1 estimate2 statistic p.value parameter conf.low
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -7.24 17.1 24.4 -3.77 0.00137 18.3 -11.3
#> # ℹ 3 more variables: conf.high <dbl>, method <chr>, alternative <chr>
wt <- wilcox.test(mpg ~ am, data = mtcars, conf.int = TRUE, exact = FALSE)
tidy(wt)
#> # A tibble: 1 × 7
#> estimate statistic p.value conf.low conf.high method alternative
#> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 -6.80 42 0.00187 -11.7 -2.90 Wilcoxon rank… two.sided
ct <- cor.test(mtcars$wt, mtcars$mpg)
tidy(ct)
#> # A tibble: 1 × 8
#> estimate statistic p.value parameter conf.low conf.high method
#> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <chr>
#> 1 -0.868 -9.56 1.29e-10 30 -0.934 -0.744 Pearson's prod…
#> # ℹ 1 more variable: alternative <chr>
chit <- chisq.test(xtabs(Freq ~ Sex + Class, data = as.data.frame(Titanic)))
tidy(chit)
#> # A tibble: 1 × 4
#> statistic p.value parameter method
#> <dbl> <dbl> <int> <chr>
#> 1 350. 1.56e-75 3 Pearson's Chi-squared test
augment(chit)
#> # A tibble: 8 × 9
#> Sex Class .observed .prop .row.prop .col.prop .expected .resid
#> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Male 1st 180 0.0818 0.104 0.554 256. -4.73
#> 2 Female 1st 145 0.0659 0.309 0.446 69.4 9.07
#> 3 Male 2nd 179 0.0813 0.103 0.628 224. -3.02
#> 4 Female 2nd 106 0.0482 0.226 0.372 60.9 5.79
#> 5 Male 3rd 510 0.232 0.295 0.722 555. -1.92
#> 6 Female 3rd 196 0.0891 0.417 0.278 151. 3.68
#> 7 Male Crew 862 0.392 0.498 0.974 696. 6.29
#> 8 Female Crew 23 0.0104 0.0489 0.0260 189. -12.1
#> # ℹ 1 more variable: .std.resid <dbl>