Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'pairwise.htest'
tidy(x, ...)
Arguments
- x
A
pairwise.htest
object such as those returned fromstats::pairwise.t.test()
orstats::pairwise.wilcox.test()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
Details
Note that in one-sided tests, the alternative hypothesis of each test can be stated as "group1 is greater/less than group2".
Note also that the columns of group1 and group2 will always be a factor, even if the original input is (e.g.) numeric.
See also
stats::pairwise.t.test()
, stats::pairwise.wilcox.test()
,
tidy()
Other htest tidiers:
augment.htest()
,
tidy.htest()
,
tidy.power.htest()
Value
A tibble::tibble()
with columns:
- group1
First group being compared.
- group2
Second group being compared.
- p.value
The two-sided p-value associated with the observed statistic.
Examples
attach(airquality)
Month <- factor(Month, labels = month.abb[5:9])
ptt <- pairwise.t.test(Ozone, Month)
tidy(ptt)
#> # A tibble: 10 × 3
#> group1 group2 p.value
#> <chr> <chr> <dbl>
#> 1 Jun May 1
#> 2 Jul May 0.000264
#> 3 Jul Jun 0.0511
#> 4 Aug May 0.000195
#> 5 Aug Jun 0.0499
#> 6 Aug Jul 1
#> 7 Sep May 1
#> 8 Sep Jun 1
#> 9 Sep Jul 0.00488
#> 10 Sep Aug 0.00388
library(modeldata)
data(hpc_data)
attach(hpc_data)
ptt2 <- pairwise.t.test(compounds, class)
tidy(ptt2)
#> # A tibble: 6 × 3
#> group1 group2 p.value
#> <chr> <chr> <dbl>
#> 1 F VF 9.28e- 8
#> 2 M VF 2.55e- 61
#> 3 M F 4.26e- 34
#> 4 L VF 2.52e-126
#> 5 L F 5.44e- 95
#> 6 L M 2.45e- 25
tidy(pairwise.t.test(compounds, class, alternative = "greater"))
#> # A tibble: 6 × 3
#> group1 group2 p.value
#> <chr> <chr> <dbl>
#> 1 F VF 4.64e- 8
#> 2 M VF 1.27e- 61
#> 3 M F 2.13e- 34
#> 4 L VF 1.26e-126
#> 5 L F 2.72e- 95
#> 6 L M 1.22e- 25
tidy(pairwise.t.test(compounds, class, alternative = "less"))
#> # A tibble: 6 × 3
#> group1 group2 p.value
#> <chr> <chr> <dbl>
#> 1 F VF 1
#> 2 M VF 1
#> 3 M F 1
#> 4 L VF 1
#> 5 L F 1
#> 6 L M 1
tidy(pairwise.wilcox.test(compounds, class))
#> # A tibble: 6 × 3
#> group1 group2 p.value
#> <chr> <chr> <dbl>
#> 1 F VF 4.85e-32
#> 2 M VF 2.41e-66
#> 3 M F 1.45e-23
#> 4 L VF 1.90e-77
#> 5 L F 1.28e-42
#> 6 L M 6.84e- 9