Skip to content

Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

Usage

# S3 method for class 'power.htest'
tidy(x, ...)

Arguments

x

A power.htest object such as those returned from stats::power.t.test().

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Two exceptions here are:

  • tidy() methods will warn when supplied an exponentiate argument if it will be ignored.

  • augment() methods will warn when supplied a newdata argument if it will be ignored.

See also

Value

A tibble::tibble() with columns:

delta

True difference in means.

n

Number of observations by component.

power

Power achieved for given value of n.

sd

Standard deviation.

sig.level

Significance level (Type I error probability).

Examples


ptt <- power.t.test(n = 2:30, delta = 1)
tidy(ptt)
#> # A tibble: 29 × 5
#>        n delta    sd sig.level  power
#>    <int> <dbl> <dbl>     <dbl>  <dbl>
#>  1     2     1     1      0.05 0.0913
#>  2     3     1     1      0.05 0.157 
#>  3     4     1     1      0.05 0.222 
#>  4     5     1     1      0.05 0.286 
#>  5     6     1     1      0.05 0.347 
#>  6     7     1     1      0.05 0.406 
#>  7     8     1     1      0.05 0.461 
#>  8     9     1     1      0.05 0.513 
#>  9    10     1     1      0.05 0.562 
#> 10    11     1     1      0.05 0.607 
#> # ℹ 19 more rows

library(ggplot2)

ggplot(tidy(ptt), aes(n, power)) +
  geom_line()