For models that have only a single component, the tidy()
and
glance()
methods are identical. Please see the documentation for both
of those methods.
Arguments
- x
An
htest
objected, such as those created bystats::cor.test()
,stats::t.test()
,stats::wilcox.test()
,stats::chisq.test()
, etc.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
See also
tidy()
, stats::cor.test()
, stats::t.test()
,
stats::wilcox.test()
, stats::chisq.test()
Other htest tidiers:
augment.htest()
,
tidy.pairwise.htest()
,
tidy.power.htest()
Value
A tibble::tibble()
with columns:
- alternative
Alternative hypothesis (character).
- conf.high
Upper bound on the confidence interval for the estimate.
- conf.low
Lower bound on the confidence interval for the estimate.
- estimate
The estimated value of the regression term.
- estimate1
Sometimes two estimates are computed, such as in a two-sample t-test.
- estimate2
Sometimes two estimates are computed, such as in a two-sample t-test.
- method
Method used.
- p.value
The two-sided p-value associated with the observed statistic.
- parameter
The parameter being modeled.
- statistic
The value of a T-statistic to use in a hypothesis that the regression term is non-zero.
Examples
tt <- t.test(rnorm(10))
tidy(tt)
#> # A tibble: 1 × 8
#> estimate statistic p.value parameter conf.low conf.high method
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 -0.218 -0.533 0.607 9 -1.14 0.706 One Sample t-te…
#> # ℹ 1 more variable: alternative <chr>
# the glance output will be the same for each of the below tests
glance(tt)
#> # A tibble: 1 × 8
#> estimate statistic p.value parameter conf.low conf.high method
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 -0.218 -0.533 0.607 9 -1.14 0.706 One Sample t-te…
#> # ℹ 1 more variable: alternative <chr>
tt <- t.test(mpg ~ am, data = mtcars)
tidy(tt)
#> # A tibble: 1 × 10
#> estimate estimate1 estimate2 statistic p.value parameter conf.low
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -7.24 17.1 24.4 -3.77 0.00137 18.3 -11.3
#> # ℹ 3 more variables: conf.high <dbl>, method <chr>, alternative <chr>
wt <- wilcox.test(mpg ~ am, data = mtcars, conf.int = TRUE, exact = FALSE)
tidy(wt)
#> # A tibble: 1 × 7
#> estimate statistic p.value conf.low conf.high method alternative
#> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 -6.80 42 0.00187 -11.7 -2.90 Wilcoxon rank… two.sided
ct <- cor.test(mtcars$wt, mtcars$mpg)
tidy(ct)
#> # A tibble: 1 × 8
#> estimate statistic p.value parameter conf.low conf.high method
#> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <chr>
#> 1 -0.868 -9.56 1.29e-10 30 -0.934 -0.744 Pearson's prod…
#> # ℹ 1 more variable: alternative <chr>
chit <- chisq.test(xtabs(Freq ~ Sex + Class, data = as.data.frame(Titanic)))
tidy(chit)
#> # A tibble: 1 × 4
#> statistic p.value parameter method
#> <dbl> <dbl> <int> <chr>
#> 1 350. 1.56e-75 3 Pearson's Chi-squared test
augment(chit)
#> # A tibble: 8 × 9
#> Sex Class .observed .prop .row.prop .col.prop .expected .resid
#> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Male 1st 180 0.0818 0.104 0.554 256. -4.73
#> 2 Female 1st 145 0.0659 0.309 0.446 69.4 9.07
#> 3 Male 2nd 179 0.0813 0.103 0.628 224. -3.02
#> 4 Female 2nd 106 0.0482 0.226 0.372 60.9 5.79
#> 5 Male 3rd 510 0.232 0.295 0.722 555. -1.92
#> 6 Female 3rd 196 0.0891 0.417 0.278 151. 3.68
#> 7 Male Crew 862 0.392 0.498 0.974 696. 6.29
#> 8 Female Crew 23 0.0104 0.0489 0.0260 189. -12.1
#> # ℹ 1 more variable: .std.resid <dbl>