Skip to content

Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

Usage

# S3 method for class 'pyears'
tidy(x, ...)

Arguments

x

A pyears object returned from survival::pyears().

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Two exceptions here are:

  • tidy() methods will warn when supplied an exponentiate argument if it will be ignored.

  • augment() methods will warn when supplied a newdata argument if it will be ignored.

Details

expected is only present in the output when if a ratetable term is present.

If the data.frame = TRUE argument is supplied to pyears, this is simply the contents of x$data.

Value

A tibble::tibble() with columns:

expected

Expected number of events.

pyears

Person-years of exposure.

n

number of subjects contributing time

event

observed number of events

Examples


# load libraries for models and data
library(survival)

# generate and format data
temp.yr <- tcut(mgus$dxyr, 55:92, labels = as.character(55:91))
temp.age <- tcut(mgus$age, 34:101, labels = as.character(34:100))
ptime <- ifelse(is.na(mgus$pctime), mgus$futime, mgus$pctime)
pstat <- ifelse(is.na(mgus$pctime), 0, 1)
pfit <- pyears(Surv(ptime / 365.25, pstat) ~ temp.yr + temp.age + sex, mgus,
  data.frame = TRUE
)

# summarize model fit with tidiers
tidy(pfit)
#> # A tibble: 1,752 × 6
#>    temp.yr temp.age sex     pyears     n event
#>    <fct>   <fct>    <fct>    <dbl> <dbl> <dbl>
#>  1 71      34       female 0.00274     1     0
#>  2 68      35       female 0.00274     1     0
#>  3 72      35       female 0.00274     1     0
#>  4 69      36       female 0.00274     1     0
#>  5 73      36       female 0.00274     1     0
#>  6 69      37       female 0.00274     1     0
#>  7 70      37       female 0.00274     1     0
#>  8 74      37       female 0.00274     1     0
#>  9 70      38       female 0.00274     1     0
#> 10 71      38       female 0.00274     1     0
#> # ℹ 1,742 more rows
glance(pfit)
#> # A tibble: 1 × 3
#>   total offtable  nobs
#>   <dbl>    <dbl> <int>
#> 1  8.32    0.727   241

# if data.frame argument is not given, different information is present in
# output
pfit2 <- pyears(Surv(ptime / 365.25, pstat) ~ temp.yr + temp.age + sex, mgus)

tidy(pfit2)
#> # A tibble: 37 × 402
#>    pyears.34.female pyears.35.female pyears.36.female pyears.37.female
#>               <dbl>            <dbl>            <dbl>            <dbl>
#>  1                0                0                0                0
#>  2                0                0                0                0
#>  3                0                0                0                0
#>  4                0                0                0                0
#>  5                0                0                0                0
#>  6                0                0                0                0
#>  7                0                0                0                0
#>  8                0                0                0                0
#>  9                0                0                0                0
#> 10                0                0                0                0
#> # ℹ 27 more rows
#> # ℹ 398 more variables: pyears.38.female <dbl>, pyears.39.female <dbl>,
#> #   pyears.40.female <dbl>, pyears.41.female <dbl>,
#> #   pyears.42.female <dbl>, pyears.43.female <dbl>,
#> #   pyears.44.female <dbl>, pyears.45.female <dbl>,
#> #   pyears.46.female <dbl>, pyears.47.female <dbl>,
#> #   pyears.48.female <dbl>, pyears.49.female <dbl>, …
glance(pfit2)
#> # A tibble: 1 × 3
#>   total offtable  nobs
#>   <dbl>    <dbl> <int>
#> 1  8.32    0.727   241