Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
Usage
# S3 method for class 'survexp'
tidy(x, ...)
Arguments
- x
An
survexp
object returned fromsurvival::survexp()
.- ...
Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in
...
, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you passconf.lvel = 0.9
, all computation will proceed usingconf.level = 0.95
. Two exceptions here are:
See also
Other survexp tidiers:
glance.survexp()
Other survival tidiers:
augment.coxph()
,
augment.survreg()
,
glance.aareg()
,
glance.cch()
,
glance.coxph()
,
glance.pyears()
,
glance.survdiff()
,
glance.survexp()
,
glance.survfit()
,
glance.survreg()
,
tidy.aareg()
,
tidy.cch()
,
tidy.coxph()
,
tidy.pyears()
,
tidy.survdiff()
,
tidy.survfit()
,
tidy.survreg()
Value
A tibble::tibble()
with columns:
- n.risk
Number of individuals at risk at time zero.
- time
Point in time.
- estimate
Estimate survival
Examples
# load libraries for models and data
library(survival)
# fit model
sexpfit <- survexp(
futime ~ 1,
rmap = list(
sex = "male",
year = accept.dt,
age = (accept.dt - birth.dt)
),
method = "conditional",
data = jasa
)
# summarize model fit with tidiers
tidy(sexpfit)
#> # A tibble: 88 × 3
#> time estimate n.risk
#> <dbl> <dbl> <int>
#> 1 0 1 102
#> 2 1 1.00 102
#> 3 2 1.00 99
#> 4 4 1.00 96
#> 5 5 1.00 94
#> 6 7 1.00 92
#> 7 8 1.00 91
#> 8 10 1.00 90
#> 9 11 1.00 89
#> 10 15 1.00 88
#> # ℹ 78 more rows
glance(sexpfit)
#> # A tibble: 1 × 3
#> n.max n.start timepoints
#> <int> <int> <int>
#> 1 102 102 88